File size: 2,602 Bytes
c4d4b67 f2f08a9 c4d4b67 f2f08a9 5e7ada0 c4d4b67 f2f08a9 5e7ada0 c4d4b67 5e7ada0 c4d4b67 f2f08a9 c4d4b67 f2f08a9 5e7ada0 c4d4b67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.40436835891381345
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5951
- Wer Ortho: 0.4781
- Wer: 0.4044
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 600
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 2.605 | 1.79 | 50 | 2.3450 | 0.5355 | 0.3967 |
| 1.67 | 3.57 | 100 | 1.4800 | 0.5355 | 0.4126 |
| 0.8205 | 5.36 | 150 | 0.8745 | 0.5836 | 0.4787 |
| 0.5984 | 7.14 | 200 | 0.7396 | 0.4923 | 0.4079 |
| 0.4993 | 8.93 | 250 | 0.6831 | 0.4769 | 0.3996 |
| 0.4134 | 10.71 | 300 | 0.6510 | 0.4830 | 0.4032 |
| 0.384 | 12.5 | 350 | 0.6307 | 0.4738 | 0.3961 |
| 0.3286 | 14.29 | 400 | 0.6162 | 0.4806 | 0.4050 |
| 0.3188 | 16.07 | 450 | 0.6062 | 0.4800 | 0.4050 |
| 0.2751 | 17.86 | 500 | 0.6010 | 0.4843 | 0.4097 |
| 0.2568 | 19.64 | 550 | 0.5970 | 0.4750 | 0.4026 |
| 0.237 | 21.43 | 600 | 0.5951 | 0.4781 | 0.4044 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.0
|