--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.6605667060212514 --- # whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7343 - Wer Ortho: 0.6730 - Wer: 0.6606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.4699 | 3.57 | 100 | 0.6164 | 0.4695 | 0.4067 | | 0.1623 | 7.14 | 200 | 0.5796 | 0.4275 | 0.3796 | | 0.0399 | 10.71 | 300 | 0.6172 | 0.4528 | 0.4168 | | 0.0082 | 14.29 | 400 | 0.6808 | 0.5262 | 0.5083 | | 0.0027 | 17.86 | 500 | 0.7123 | 0.6422 | 0.6275 | | 0.0016 | 21.43 | 600 | 0.7343 | 0.6730 | 0.6606 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0