Add new SentenceTransformer model.
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +9 -0
- README.md +112 -0
- added_tokens.json +5 -0
- config.json +29 -0
- config_sentence_transformers.json +7 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +56 -0
- tokenizer.json +3 -0
- tokenizer_config.json +90 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
license: apache-2.0
|
4 |
+
language:
|
5 |
+
- cs
|
6 |
+
- da
|
7 |
+
- de
|
8 |
+
- en
|
9 |
+
- es
|
10 |
+
- fi
|
11 |
+
- fr
|
12 |
+
- he
|
13 |
+
- hr
|
14 |
+
- hu
|
15 |
+
- id
|
16 |
+
- it
|
17 |
+
- nl
|
18 |
+
- 'no'
|
19 |
+
- pl
|
20 |
+
- pt
|
21 |
+
- ro
|
22 |
+
- ru
|
23 |
+
- sv
|
24 |
+
- tr
|
25 |
+
- vi
|
26 |
+
tags:
|
27 |
+
- sentence-transformers
|
28 |
+
- feature-extraction
|
29 |
+
- sentence-similarity
|
30 |
+
- transformers
|
31 |
+
datasets:
|
32 |
+
- clips/mfaq
|
33 |
+
widget:
|
34 |
+
- text: "<Q>How many models can I host on HuggingFace?"
|
35 |
+
example_title: source_sentence
|
36 |
+
---
|
37 |
+
|
38 |
+
# MFAQ
|
39 |
+
|
40 |
+
We present a multilingual FAQ retrieval model trained on the [MFAQ dataset](https://huggingface.co/datasets/clips/mfaq), it ranks candidate answers according to a given question.
|
41 |
+
|
42 |
+
## Installation
|
43 |
+
|
44 |
+
```
|
45 |
+
pip install sentence-transformers transformers
|
46 |
+
```
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
You can use MFAQ with sentence-transformers or directly with a HuggingFace model.
|
50 |
+
In both cases, questions need to be prepended with `<Q>`, and answers with `<A>`.
|
51 |
+
|
52 |
+
#### Sentence Transformers
|
53 |
+
```python
|
54 |
+
from sentence_transformers import SentenceTransformer
|
55 |
+
|
56 |
+
question = "<Q>How many models can I host on HuggingFace?"
|
57 |
+
answer_1 = "<A>All plans come with unlimited private models and datasets."
|
58 |
+
answer_2 = "<A>AutoNLP is an automatic way to train and deploy state-of-the-art NLP models, seamlessly integrated with the Hugging Face ecosystem."
|
59 |
+
answer_3 = "<A>Based on how much training data and model variants are created, we send you a compute cost and payment link - as low as $10 per job."
|
60 |
+
|
61 |
+
model = SentenceTransformer('clips/mfaq')
|
62 |
+
embeddings = model.encode([question, answer_1, answer_3, answer_3])
|
63 |
+
print(embeddings)
|
64 |
+
```
|
65 |
+
|
66 |
+
#### HuggingFace Transformers
|
67 |
+
|
68 |
+
```python
|
69 |
+
from transformers import AutoTokenizer, AutoModel
|
70 |
+
import torch
|
71 |
+
|
72 |
+
def mean_pooling(model_output, attention_mask):
|
73 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
74 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
75 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
76 |
+
|
77 |
+
question = "<Q>How many models can I host on HuggingFace?"
|
78 |
+
answer_1 = "<A>All plans come with unlimited private models and datasets."
|
79 |
+
answer_2 = "<A>AutoNLP is an automatic way to train and deploy state-of-the-art NLP models, seamlessly integrated with the Hugging Face ecosystem."
|
80 |
+
answer_3 = "<A>Based on how much training data and model variants are created, we send you a compute cost and payment link - as low as $10 per job."
|
81 |
+
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained('clips/mfaq')
|
83 |
+
model = AutoModel.from_pretrained('clips/mfaq')
|
84 |
+
|
85 |
+
# Tokenize sentences
|
86 |
+
encoded_input = tokenizer([question, answer_1, answer_3, answer_3], padding=True, truncation=True, return_tensors='pt')
|
87 |
+
|
88 |
+
# Compute token embeddings
|
89 |
+
with torch.no_grad():
|
90 |
+
model_output = model(**encoded_input)
|
91 |
+
|
92 |
+
# Perform pooling. In this case, max pooling.
|
93 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
94 |
+
```
|
95 |
+
|
96 |
+
## Training
|
97 |
+
You can find the training script for the model [here](https://github.com/clips/mfaq).
|
98 |
+
|
99 |
+
## People
|
100 |
+
This model was developed by [Maxime De Bruyn](https://www.linkedin.com/in/maximedebruyn/), Ehsan Lotfi, Jeska Buhmann and Walter Daelemans.
|
101 |
+
|
102 |
+
## Citation information
|
103 |
+
```
|
104 |
+
@misc{debruyn2021mfaq,
|
105 |
+
title={MFAQ: a Multilingual FAQ Dataset},
|
106 |
+
author={Maxime De Bruyn and Ehsan Lotfi and Jeska Buhmann and Walter Daelemans},
|
107 |
+
year={2021},
|
108 |
+
eprint={2109.12870},
|
109 |
+
archivePrefix={arXiv},
|
110 |
+
primaryClass={cs.CL}
|
111 |
+
}
|
112 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<A>": 250003,
|
3 |
+
"<Q>": 250002,
|
4 |
+
"<link>": 250004
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "clips-mfaq-test/",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.25,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.35.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250005
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.10.2",
|
5 |
+
"pytorch": "1.9.0"
|
6 |
+
}
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c18b358dbd0bbf823fb81ba9f0df77ed11f19ae1bb6ba900489189c4ea9b6780
|
3 |
+
size 1112206312
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<Q>",
|
4 |
+
"<A>",
|
5 |
+
"<link>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<s>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"cls_token": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"eos_token": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"mask_token": {
|
29 |
+
"content": "<mask>",
|
30 |
+
"lstrip": true,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
},
|
35 |
+
"pad_token": {
|
36 |
+
"content": "<pad>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false
|
41 |
+
},
|
42 |
+
"sep_token": {
|
43 |
+
"content": "</s>",
|
44 |
+
"lstrip": false,
|
45 |
+
"normalized": false,
|
46 |
+
"rstrip": false,
|
47 |
+
"single_word": false
|
48 |
+
},
|
49 |
+
"unk_token": {
|
50 |
+
"content": "<unk>",
|
51 |
+
"lstrip": false,
|
52 |
+
"normalized": false,
|
53 |
+
"rstrip": false,
|
54 |
+
"single_word": false
|
55 |
+
}
|
56 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c202c2904979914d10811ca26aaf9672c41820a3d25cb432040fe1405be30ffb
|
3 |
+
size 17083552
|
tokenizer_config.json
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"250002": {
|
44 |
+
"content": "<Q>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"250003": {
|
52 |
+
"content": "<A>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"250004": {
|
60 |
+
"content": "<link>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"additional_special_tokens": [
|
69 |
+
"<Q>",
|
70 |
+
"<A>",
|
71 |
+
"<link>"
|
72 |
+
],
|
73 |
+
"bos_token": "<s>",
|
74 |
+
"clean_up_tokenization_spaces": true,
|
75 |
+
"cls_token": "<s>",
|
76 |
+
"eos_token": "</s>",
|
77 |
+
"mask_token": "<mask>",
|
78 |
+
"max_length": 128,
|
79 |
+
"model_max_length": 128,
|
80 |
+
"pad_to_multiple_of": null,
|
81 |
+
"pad_token": "<pad>",
|
82 |
+
"pad_token_type_id": 0,
|
83 |
+
"padding_side": "right",
|
84 |
+
"sep_token": "</s>",
|
85 |
+
"stride": 0,
|
86 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
87 |
+
"truncation_side": "right",
|
88 |
+
"truncation_strategy": "longest_first",
|
89 |
+
"unk_token": "<unk>"
|
90 |
+
}
|