ppo-LunarLander-v2 / config.json
ramonzaca's picture
Upload best PPO LunarLander-v2 agent (tuned with Optuna).
630271a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x177d82d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x177d82dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x177d82e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x177d82ef0>", "_build": "<function ActorCriticPolicy._build at 0x177d82f80>", "forward": "<function ActorCriticPolicy.forward at 0x177d83010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x177d830a0>", "_predict": "<function ActorCriticPolicy._predict at 0x177d83130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x177d831c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x177d83250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x177d832e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x177d75f80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1572864, "_total_timesteps": 1565439, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656944194.513899, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHK6pL4RBBE/Po+WPt2fBL8OX0u+qkSFPgAAAAAAAAAATQskvUv6qD+gCOy+ZnYTv1injjpOqt+9AAAAAAAAAACzV9w9z+x6PgrhbL2bdJi+yqrcPMZJgz0AAAAAAAAAAJqivTwciHY+YmOxPCyYuL7swCk9w3yJvQAAAAAAAAAAYBedvrZB/D4t+6w+Bgj0vo56370e9J89AAAAAAAAAAAz/1Q8uB2Du6oPkrux/ZU837vDPB4FgL0AAIA/AACAP+YKPL3GZgg/cgZOu/rItr5piEO98sIMvQAAAAAAAAAA5nkVPY/eSbrC5Isy/9pqsAsxWDtkGQOzAACAPwAAgD9ALLu9KM7HPQL3lD6Hjoq+pKT4PMobxT0AAAAAAAAAAADYDjsc8q4/lPg/PTA75L4JpOu6QVSavAAAAAAAAAAAZt5jvvPUkj+eNOu+0XQgvxgfnr665Eq+AAAAAAAAAACGsx6+S+nuPh6kWD6EJsO+QHo1OxppAT4AAAAAAAAAAGaUkb10HcI+Pd6oPf4txb6W1C+9h0u8PQAAAAAAAAAAs1FNPYVky7s9k/+7+pN/PNZuLj3+KVm9AACAPwAAgD9ApRM+19EMPkOij76cCJ2+RainvOrvp70AAAAAAAAAAGZ5gzwUEKO6HpWQsqDSVbFjCQO6cHmDMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00474307845914157, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId50N+WdRcUCUhpRSlIwBbJRNBwGMAXSUR0DGYVEMG5c1dX2UKGgGaAloD0MIZmzoZn98YkCUhpRSlGgVTegDaBZHQMZhVhYNiH91fZQoaAZoCWgPQwgteTwt/zxwQJSGlFKUaBVLzGgWR0DGYV8iwB5pdX2UKGgGaAloD0MIpkdTPVmMckCUhpRSlGgVS9xoFkdAxmFhgBLf13V9lChoBmgJaA9DCGjr4GCvAHRAlIaUUpRoFUviaBZHQMZhYYx1xKh1fZQoaAZoCWgPQwggmKPHL8BzQJSGlFKUaBVNAwFoFkdAxmFtScbzb3V9lChoBmgJaA9DCLfUQV5PZHBAlIaUUpRoFUv8aBZHQMZhcnktEoh1fZQoaAZoCWgPQwiQoWMHlWpyQJSGlFKUaBVL32gWR0DGYXJ/wy6+dX2UKGgGaAloD0MIpKt0d10bc0CUhpRSlGgVS+5oFkdAxmF1bhWHUXV9lChoBmgJaA9DCK8mT1kNtXBAlIaUUpRoFUvsaBZHQMZhiXvYvnN1fZQoaAZoCWgPQwgZjXxeMRdwQJSGlFKUaBVL0mgWR0DGYZe+ueSTdX2UKGgGaAloD0MIovDZOjiUbUCUhpRSlGgVS8xoFkdAxmGi7voeP3V9lChoBmgJaA9DCJbNHJLahnJAlIaUUpRoFUvlaBZHQMZhp6+36RB1fZQoaAZoCWgPQwihnj4Cv3FxQJSGlFKUaBVL4mgWR0DGYa4hGH58dX2UKGgGaAloD0MIr3srEtPqcUCUhpRSlGgVS9toFkdAxmGyEEkjYHV9lChoBmgJaA9DCOrPfqSIOm1AlIaUUpRoFUvVaBZHQMZhvbmlqJx1fZQoaAZoCWgPQwgwEATIkO5wQJSGlFKUaBVL8GgWR0DGYcHNX5nEdX2UKGgGaAloD0MIdHtJY7RNb0CUhpRSlGgVS9xoFkdAxmHD2g398HV9lChoBmgJaA9DCLcKYqDrK3NAlIaUUpRoFU0VAWgWR0DGYdAXTEzgdX2UKGgGaAloD0MI1a4JaU1McUCUhpRSlGgVS9RoFkdAxmHUJN0vG3V9lChoBmgJaA9DCIQNT6/U+XJAlIaUUpRoFUvZaBZHQMZh1oysS011fZQoaAZoCWgPQwgAPKJC9bhyQJSGlFKUaBVL72gWR0DGYdsgdOqOdX2UKGgGaAloD0MIQEtXsA0XckCUhpRSlGgVS9xoFkdAxmH0d92HL3V9lChoBmgJaA9DCL4tWKqLfnJAlIaUUpRoFU0cAWgWR0DGYfvoHLRsdX2UKGgGaAloD0MIfNRfrzBQckCUhpRSlGgVS9NoFkdAxmIATcqOLnV9lChoBmgJaA9DCCeh9IUQVmNAlIaUUpRoFU3oA2gWR0DGYgJLIxQBdX2UKGgGaAloD0MIZkzBGqf/cUCUhpRSlGgVS89oFkdAxmINN6gM+nV9lChoBmgJaA9DCPZhvVHr93FAlIaUUpRoFUvlaBZHQMZiEnxz7uV1fZQoaAZoCWgPQwjKbmb042RzQJSGlFKUaBVL2mgWR0DGYhe1fE4vdX2UKGgGaAloD0MIHLEWnwLEcECUhpRSlGgVS9doFkdAxmK1i2lVLnV9lChoBmgJaA9DCOblsPsOtHJAlIaUUpRoFUvkaBZHQMZit/ZmI0t1fZQoaAZoCWgPQwhffTz0XS9vQJSGlFKUaBVLz2gWR0DGYsUy+HrRdX2UKGgGaAloD0MIu+zXnS6vcECUhpRSlGgVS/toFkdAxmLIypJf6XV9lChoBmgJaA9DCAxzgjZ5FHNAlIaUUpRoFUvmaBZHQMZiyjqfOD91fZQoaAZoCWgPQwioxks3if1vQJSGlFKUaBVL0WgWR0DGYssnPVurdX2UKGgGaAloD0MIOPbsucyscECUhpRSlGgVS+5oFkdAxmLQxL0z03V9lChoBmgJaA9DCAIoRpbMGnNAlIaUUpRoFUvJaBZHQMZi54kVvdd1fZQoaAZoCWgPQwjOiqiJ/oJzQJSGlFKUaBVL5GgWR0DGYumPHT7VdX2UKGgGaAloD0MIPGagMj4BckCUhpRSlGgVS+doFkdAxmLxul41P3V9lChoBmgJaA9DCE1O7QxTGnBAlIaUUpRoFUvdaBZHQMZi8ySeRPp1fZQoaAZoCWgPQwia7Qp9cBRwQJSGlFKUaBVL5WgWR0DGYwJ6lchUdX2UKGgGaAloD0MIq5hKPyFUcUCUhpRSlGgVS+loFkdAxmMKNipeeHV9lChoBmgJaA9DCP1JfO5EcnBAlIaUUpRoFUvlaBZHQMZjDhnzxw11fZQoaAZoCWgPQwj9ogT9RRlxQJSGlFKUaBVLyWgWR0DGYxQnSfDldX2UKGgGaAloD0MIb9kh/uEockCUhpRSlGgVS91oFkdAxmMbEsrd33V9lChoBmgJaA9DCJ24HK8AU3FAlIaUUpRoFUvgaBZHQMZjK+l9Brx1fZQoaAZoCWgPQwhau+1C8+hzQJSGlFKUaBVNvAJoFkdAxmMyNpdrwnV9lChoBmgJaA9DCJAwDFgysHJAlIaUUpRoFUvnaBZHQMZjNIqslsx1fZQoaAZoCWgPQwjWc9L7BkBwQJSGlFKUaBVL92gWR0DGYzp0Qsf8dX2UKGgGaAloD0MIycnErYJlc0CUhpRSlGgVS/1oFkdAxmM/Qv6CUXV9lChoBmgJaA9DCJHtfD+1Sm9AlIaUUpRoFUvxaBZHQMZjQCX6ZYx1fZQoaAZoCWgPQwgk7UYfMzJzQJSGlFKUaBVNJgJoFkdAxmNBuWKMvXV9lChoBmgJaA9DCEmhLHz9v3JAlIaUUpRoFUvvaBZHQMZjUZlOGj91fZQoaAZoCWgPQwh6bqErkeFyQJSGlFKUaBVL22gWR0DGY1MeZG8VdX2UKGgGaAloD0MITMecZyz4cUCUhpRSlGgVS/NoFkdAxmNUkCV8kXV9lChoBmgJaA9DCEUuOIN/FnRAlIaUUpRoFU0HAWgWR0DGY2IAwPAgdX2UKGgGaAloD0MIS+oENBGTc0CUhpRSlGgVS/poFkdAxmNrh/iHZnV9lChoBmgJaA9DCCfcK/PWDnBAlIaUUpRoFUvraBZHQMZjbzOX3QF1fZQoaAZoCWgPQwhRgv5Cz7NyQJSGlFKUaBVL5GgWR0DGY3FxffGddX2UKGgGaAloD0MILNSa5p2cc0CUhpRSlGgVS/9oFkdAxmNzsYVIqnV9lChoBmgJaA9DCNf2dktyY3FAlIaUUpRoFUvoaBZHQMZjeLSNOud1fZQoaAZoCWgPQwgGgZVDyyNzQJSGlFKUaBVL4GgWR0DGY4MTYdyUdX2UKGgGaAloD0MIie3uAboCckCUhpRSlGgVS9toFkdAxmOGBZpztHV9lChoBmgJaA9DCAdi2cwhpXFAlIaUUpRoFUvLaBZHQMZjizF2mpF1fZQoaAZoCWgPQwiS6ju/KE1wQJSGlFKUaBVL6WgWR0DGY4141P30dX2UKGgGaAloD0MIPKJCdbOyc0CUhpRSlGgVS+toFkdAxmOS9nscAHV9lChoBmgJaA9DCGyWy0bn5nFAlIaUUpRoFUvgaBZHQMZjlSvTw2F1fZQoaAZoCWgPQwgIrYcvUyFyQJSGlFKUaBVL62gWR0DGY5dw1ivxdX2UKGgGaAloD0MIeR9Hc+RdcUCUhpRSlGgVS8NoFkdAxmOcDoQnQnV9lChoBmgJaA9DCGHdeHdkKnFAlIaUUpRoFUvbaBZHQMZjoqxC6Yp1fZQoaAZoCWgPQwgBTBk44GxxQJSGlFKUaBVL2mgWR0DGY6U0Nz8xdX2UKGgGaAloD0MIKLnDJrIvbkCUhpRSlGgVS85oFkdAxmO3uF6Av3V9lChoBmgJaA9DCD2cwHSa9HFAlIaUUpRoFUvCaBZHQMZjuQqRU3p1fZQoaAZoCWgPQwiKOQg6mutxQJSGlFKUaBVL8mgWR0DGY7yfg75mdX2UKGgGaAloD0MIzlXzHBFMbUCUhpRSlGgVS+hoFkdAxmPF5M10knV9lChoBmgJaA9DCAlx5ewdh29AlIaUUpRoFUvlaBZHQMZjyYCyQgd1fZQoaAZoCWgPQwhuh4bFqLFxQJSGlFKUaBVL4mgWR0DGY80xCY1HdX2UKGgGaAloD0MIFkuRfCXWb0CUhpRSlGgVS9NoFkdAxmPUp0fYBnV9lChoBmgJaA9DCJ8CYDzDA3JAlIaUUpRoFUvUaBZHQMZj2fQBxPx1fZQoaAZoCWgPQwiR8pNqn8lxQJSGlFKUaBVL6mgWR0DGY9q8J2MbdX2UKGgGaAloD0MI5q+QufLlcECUhpRSlGgVS9RoFkdAxmPcCPIXCXV9lChoBmgJaA9DCHQlAtV/EnNAlIaUUpRoFUvbaBZHQMZj4zNliBp1fZQoaAZoCWgPQwhCe/Xx0EpyQJSGlFKUaBVL62gWR0DGY+3xOLzgdX2UKGgGaAloD0MI4jrGFZeob0CUhpRSlGgVS/doFkdAxmPv+G47R3V9lChoBmgJaA9DCNKJBFONSnBAlIaUUpRoFUviaBZHQMZj8Abp/w11fZQoaAZoCWgPQwgjnuxmxn1xQJSGlFKUaBVL3mgWR0DGY/Uhs67vdX2UKGgGaAloD0MI8rBQaxphbkCUhpRSlGgVS9loFkdAxmP11JUYK3V9lChoBmgJaA9DCBTRr62f3nBAlIaUUpRoFUvHaBZHQMZkA/2K2rp1fZQoaAZoCWgPQwgPRuwTAC5zQJSGlFKUaBVL62gWR0DGZA6KNyYHdX2UKGgGaAloD0MIQPm7dxS8cUCUhpRSlGgVTQABaBZHQMZkFhVENON1fZQoaAZoCWgPQwjq501FanRxQJSGlFKUaBVLzmgWR0DGZBfEbYK6dX2UKGgGaAloD0MInIwqw3gXcECUhpRSlGgVS+xoFkdAxmQf2ys0YXV9lChoBmgJaA9DCL+1EyXhKHFAlIaUUpRoFUv2aBZHQMZkIFwkxAV1fZQoaAZoCWgPQwhBnl2+NQhyQJSGlFKUaBVLzGgWR0DGZCRouf29dX2UKGgGaAloD0MITOMXXsmRcECUhpRSlGgVS95oFkdAxmQl3BYV7HV9lChoBmgJaA9DCMP0vYYg6HNAlIaUUpRoFUvRaBZHQMZkJuavzOJ1fZQoaAZoCWgPQwh07na9tGdxQJSGlFKUaBVL4WgWR0DGZCzhBJI2dX2UKGgGaAloD0MIBoTWwxdNcUCUhpRSlGgVS+toFkdAxmQ3uiN83XV9lChoBmgJaA9DCIs2x7lN03JAlIaUUpRoFUvsaBZHQMZkRfPgNw11fZQoaAZoCWgPQwjOcAM+vwhyQJSGlFKUaBVL32gWR0DGZEdrKvFFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 384, "n_steps": 1024, "gamma": 0.994739418619968, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000", "Python": "3.10.2", "Stable-Baselines3": "1.5.0", "PyTorch": "1.13.0.dev20220610", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}