File size: 1,953 Bytes
65dc3d3
 
 
 
 
 
613174b
65dc3d3
 
 
 
 
 
613174b
65dc3d3
 
 
c91ccb9
 
 
 
65dc3d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613174b
 
c91ccb9
 
 
 
 
 
 
65dc3d3
 
 
 
 
c91ccb9
 
65dc3d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: cantonese-chinese-translation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cantonese-chinese-translation

This model is a fine-tuned version of [fnlp/bart-base-chinese](https://huggingface.co/fnlp/bart-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2349
- Bleu: 60.8976
- Chrf: 59.0374
- Gen Len: 12.9296

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Chrf    | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|
| 0.3535        | 0.48  | 1000 | 0.2530          | 60.3526 | 58.5789 | 12.8843 |
| 0.3069        | 0.96  | 2000 | 0.2452          | 60.6498 | 58.8383 | 12.9006 |
| 0.2299        | 1.44  | 3000 | 0.2389          | 60.6464 | 58.9253 | 12.8851 |
| 0.2203        | 1.92  | 4000 | 0.2349          | 60.8976 | 59.0374 | 12.9296 |
| 0.1745        | 2.39  | 5000 | 0.2407          | 60.7308 | 58.8719 | 12.9298 |
| 0.1658        | 2.87  | 6000 | 0.2373          | 60.3476 | 58.6283 | 12.8618 |
| 0.1351        | 3.35  | 7000 | 0.2589          | 60.7838 | 58.8847 | 12.9313 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.13.3