File size: 6,771 Bytes
4012b64
2d5cd65
4012b64
c903016
 
 
 
 
2d5cd65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4012b64
 
c903016
 
 
 
 
 
 
cede47e
c903016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f1a0ba
1f54588
 
 
 
 
 
 
 
4f1a0ba
 
 
 
 
2d5cd65
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
license: other
library_name: transformers
base_model: nvidia/Mistral-NeMo-Minitron-8B-Base
datasets:
- teknium/OpenHermes-2.5
pipeline_tag: text-generation
license_name: nvidia-open-model-license
license_link: https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
model-index:
- name: Mistral-NeMo-Minitron-8B-Chat
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 44.52
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 26.04
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.76
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.47
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.94
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 15.6
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
      name: Open LLM Leaderboard
---

# Mistral-NeMo-Minitron-8B-Chat

This is an instruction-tuned version of [nvidia/Mistral-NeMo-Minitron-8B-Base](https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base) that has underwent **supervised fine-tuning** with 32k instruction-response pairs from the [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) dataset.

## How to use
### Chat Format

Given the nature of the training data, the Mistral-NeMo-Minitron-8B chat model is best suited for prompts using the chat format as follows. 
You can provide the prompt as a question with a generic template as follows:
```markdown
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Question?<|im_end|>
<|im_start|>assistant
```

For example:
```markdown
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
How to explain Internet for a medieval knight?<|im_end|>
<|im_start|>assistant
```
where the model generates the text after `<|im_start|>assistant` .

### Sample inference code

This code snippets show how to get quickly started with running the model on a GPU:

```python
import torch 
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline 

torch.random.manual_seed(0) 

model_id = "rasyosef/Mistral-NeMo-Minitron-8B-Chat"
model = AutoModelForCausalLM.from_pretrained( 
    model_id,  
    device_map="auto",  
    torch_dtype=torch.bfloat16 
) 

tokenizer = AutoTokenizer.from_pretrained(model_id) 

messages = [ 
    {"role": "system", "content": "You are a helpful AI assistant."}, 
    {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, 
    {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, 
    {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, 
] 

pipe = pipeline( 
    "text-generation", 
    model=model, 
    tokenizer=tokenizer, 
) 

generation_args = { 
    "max_new_tokens": 256, 
    "return_full_text": False, 
    "temperature": 0.0, 
    "do_sample": False, 
} 

output = pipe(messages, **generation_args) 
print(output[0]['generated_text'])  
```

Note: If you want to use flash attention, call _AutoModelForCausalLM.from_pretrained()_ with _attn_implementation="flash_attention_2"_


## Benchmarks

These benchmarks were run using EleutherAI's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)

- **IFEval (Instruction Following Evaluation)**: IFEval is a fairly interesting dataset that tests the capability of models to clearly follow explicit instructions, such as “include keyword x” or “use format y”. The models are tested on their ability to strictly follow formatting instructions rather than the actual contents generated, allowing strict and rigorous metrics to be used.
  - Score: **45.83**

## Demo

Here's a colab notebook with a chat interface, you can use this to interact with the chat model.

https://huggingface.co/rasyosef/Mistral-NeMo-Minitron-8B-Chat/blob/main/Mistral_NeMo_Minitron_8B_chatbot.ipynb

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rasyosef__Mistral-NeMo-Minitron-8B-Chat)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |17.22|
|IFEval (0-Shot)    |44.52|
|BBH (3-Shot)       |26.04|
|MATH Lvl 5 (4-Shot)| 0.76|
|GPQA (0-shot)      | 3.47|
|MuSR (0-shot)      |12.94|
|MMLU-PRO (5-shot)  |15.60|