--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.641320474777448 - name: Recall type: recall value: 0.6247892074198989 - name: F1 type: f1 value: 0.6329469188529592 - name: Accuracy type: accuracy value: 0.9310811260297363 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.2434 - Precision: 0.6413 - Recall: 0.6248 - F1: 0.6329 - Accuracy: 0.9311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3551 | 1.0 | 521 | 0.2708 | 0.5957 | 0.5858 | 0.5907 | 0.9230 | | 0.2055 | 2.0 | 1042 | 0.2434 | 0.6413 | 0.6248 | 0.6329 | 0.9311 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cpu - Datasets 3.0.2 - Tokenizers 0.20.1