rchrdgwr commited on
Commit
418292f
·
verified ·
1 Parent(s): 6421650

Pushing fine-tuned model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,679 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:522
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: How did the hiring tool's design contribute to the rejection of
46
+ women applicants?
47
+ sentences:
48
+ - "legal protections. Throughout this framework the term “algorithmic discrimination”\
49
+ \ takes this meaning (and \nnot a technical understanding of discrimination as\
50
+ \ distinguishing between items). \nAUTOMATED SYSTEM: An \"automated system\" is\
51
+ \ any system, software, or process that uses computation as \nwhole or part of\
52
+ \ a system to determine outcomes, make or aid decisions, inform policy implementation,\
53
+ \ collect \ndata or observations, or otherwise interact with individuals and/or\
54
+ \ communities. Automated systems \ninclude, but are not limited to, systems derived\
55
+ \ from machine learning, statistics, or other data processing \nor artificial\
56
+ \ intelligence techniques, and exclude passive computing infrastructure. “Passive\
57
+ \ computing"
58
+ - "communities. \n• An automated system using nontraditional factors such as educational\
59
+ \ attainment and employment history as\npart of its loan underwriting and pricing\
60
+ \ model was found to be much more likely to charge an applicant whoattended a\
61
+ \ Historically Black College or University (HBCU) higher loan prices for refinancing\
62
+ \ a student loanthan an applicant who did not attend an HBCU. This was found to\
63
+ \ be true even when controlling for\nother credit-related factors.32\n•A hiring\
64
+ \ tool that learned the features of a company's employees (predominantly men)\
65
+ \ rejected women appli -\ncants for spurious and discriminatory reasons; resumes\
66
+ \ with the word “women’s,” such as “women’s\nchess club captain,” were penalized\
67
+ \ in the candidate ranking.33"
68
+ - dures before deploying the system, as well as responsibility of specific individuals
69
+ or entities to oversee ongoing assessment and mitigation. Organizational stakeholders
70
+ including those with oversight of the business process or operation being automated,
71
+ as well as other organizational divisions that may be affected due to the use
72
+ of the system, should be involved in establishing governance procedures. Responsibility
73
+ should rest high enough in the organization that decisions about resources, mitigation,
74
+ incident response, and potential rollback can be made promptly, with sufficient
75
+ weight given to risk mitigation objectives against competing concerns. Those holding
76
+ this responsibility should be made aware of any use cases with the
77
+ - source_sentence: How are companies using individual profiles based on tracked behavior
78
+ to impact the American public?
79
+ sentences:
80
+ - "requests should be used so that users understand for what use contexts, time\
81
+ \ span, and entities they are providing data and metadata consent. User experience\
82
+ \ research should be performed to ensure these consent requests meet performance\
83
+ \ standards for readability and comprehension. This includes ensuring that consent\
84
+ \ requests are accessible to users with disabilities and are available in the\
85
+ \ language(s) and reading level appro\n-\npriate for the audience. User experience\
86
+ \ design choices that intentionally obfuscate or manipulate user choice (i.e.,\
87
+ \ “dark patterns”) should be not be used. \n34\n DATA PRIVACY \nWHAT SHOULD\
88
+ \ BE EXPECTED OF AUTOMATED SYSTEMS"
89
+ - with more and more companies tracking the behavior of the American public, building
90
+ individual profiles based on this data, and using this granular-level information
91
+ as input into automated systems that further track, profile, and impact the American
92
+ public. Government agencies, particularly law enforcement agencies, also use and
93
+ help develop a variety of technologies that enhance and expand surveillance capabilities,
94
+ which similarly collect data used as input into other automated systems that directly
95
+ impact people’s lives. Federal law has not grown to address the expanding scale
96
+ of private data collection, or of the ability of governments at all levels to
97
+ access that data and leverage the means of private collection.
98
+ - "ways that threaten the rights of the American public. Too often, these tools\
99
+ \ are used to limit our opportunities and \nprevent our access to critical resources\
100
+ \ or services. These problems are well documented. In America and around \nthe\
101
+ \ world, systems supposed to help with patient care have proven unsafe, ineffective,\
102
+ \ or biased. Algorithms used \nin hiring and credit decisions have been found\
103
+ \ to reflect and reproduce existing unwanted inequities or embed \nnew harmful\
104
+ \ bias and discrimination. Unchecked social media data collection has been used\
105
+ \ to threaten people’s \nopportunities, undermine their privac y, or pervasively\
106
+ \ track their activity—often without their knowledge or \nconsent."
107
+ - source_sentence: What should entities developing technologies related to sensitive
108
+ data regularly report on?
109
+ sentences:
110
+ - "concerns that may limit their effectiveness. The results of assessments of the\
111
+ \ efficacy and potential bias of such human-based systems should be overseen by\
112
+ \ governance structures that have the potential to update the operation of the\
113
+ \ human-based system in order to mitigate these effects. \n50\n \n HUMAN\
114
+ \ ALTERNATIVES, \nCONSIDERATION, AND \nFALLBACK \nWHAT SHOULD BE EXPECTED OF AUTOMATED\
115
+ \ SYSTEMS\nThe expectations for automated systems are meant to serve as a blueprint\
116
+ \ for the development of additional \ntechnical standards and practices that are\
117
+ \ tailored for particular sectors and contexts. \nImplement additional human oversight\
118
+ \ and safeguards for automated systems related to \nsensitive domains"
119
+ - "performance testing including, but not limited to, accuracy, differential demographic\
120
+ \ impact, resulting \nerror rates (overall and per demographic group), and comparisons\
121
+ \ to previously deployed systems; \nongoing monitoring procedures and regular\
122
+ \ performance testing reports, including monitoring frequency, \nresults, and\
123
+ \ actions taken; and the procedures for and results from independent evaluations.\
124
+ \ Reporting \nshould be provided in a plain language and machine-readable manner.\
125
+ \ \n20\n \n \n \n \n \n \n SAFE AND EFFECTIVE \nSYSTEMS \nHOW THESE PRINCIPLES\
126
+ \ CAN MOVE INTO PRACTICE\nReal-life examples of how these principles can become\
127
+ \ reality, through laws, policies, and practical"
128
+ - "those who are less proximate do not (e.g., a teacher has access to their students’\
129
+ \ daily progress data while a \nsuperintendent does not). \nReporting. In addition\
130
+ \ to the reporting on data privacy (as listed above for non-sensitive data), entities\
131
+ \ devel-\noping technologies related to a sensitive domain and those collecting,\
132
+ \ using, storing, or sharing sensitive data \nshould, whenever appropriate, regularly\
133
+ \ provide public reports describing: any data security lapses or breaches \nthat\
134
+ \ resulted in sensitive data leaks; the numbe r, type, and outcomes of ethical\
135
+ \ pre-reviews undertaken; a \ndescription of any data sold, shared, or made public,\
136
+ \ and how that data was assessed to determine it did not pres-"
137
+ - source_sentence: What are the expectations for automated systems intended to serve
138
+ as a blueprint for?
139
+ sentences:
140
+ - 'Clear organizational oversight. Entities responsible for the development or use
141
+ of automated systems should lay out clear governance structures and procedures. This
142
+ includes clearly-stated governance proce
143
+
144
+ -'
145
+ - "critical resources or services. These rights, opportunities, and access to critical\
146
+ \ resources of services should \nbe enjoyed equally and be fully protected, regardless\
147
+ \ of the changing role that automated systems may play in \nour lives. \nThis\
148
+ \ framework describes protections that should be applied with respect to all automated\
149
+ \ systems that \nhave the potential to meaningfully impact individuals' or communities'\
150
+ \ exercise of: \nRIGHTS, OPPORTUNITIES, OR ACCESS\nCivil rights, civil liberties,\
151
+ \ and privacy, including freedom of speech, voting, and protections from discrimi\
152
+ \ -\nnation, excessive punishment, unlawful surveillance, and violations of privacy\
153
+ \ and other freedoms in both \npublic and private sector contexts;"
154
+ - "19\n \n \n SAFE AND EFFECTIVE \nSYSTEMS \nWHAT SHOULD BE EXPECTED OF AUTOMATED\
155
+ \ SYSTEMS\nThe expectations for automated systems are meant to serve as a blueprint\
156
+ \ for the development of additional \ntechnical standards and practices that are\
157
+ \ tailored for particular sectors and contexts. \nDerived data sources tracked\
158
+ \ and reviewed carefully. Data that is derived from other data through \nthe use\
159
+ \ of algorithms, such as data derived or inferred from prior model outputs, should\
160
+ \ be identified and tracked, e.g., via a specialized type in a data schema. Derived\
161
+ \ data should be viewed as potentially high-risk inputs that may lead to feedback\
162
+ \ loops, compounded harm, or inaccurate results. Such sources should be care\n\
163
+ -"
164
+ - source_sentence: What types of systems are considered time-critical according to
165
+ the context?
166
+ sentences:
167
+ - "Equity includes a commitment from the agencies that oversee mortgage lending\
168
+ \ to include a \nnondiscrimination standard in the proposed rules for Automated\
169
+ \ Valuation Models.52\nThe Equal Employment Opportunity Commission and the Department\
170
+ \ of Justice have clearly \nlaid out how employers’ use of AI and other automated\
171
+ \ systems can result in discrimination \nagainst job applicants and employees\
172
+ \ with disabilities.53 The documents explain \nhow employers’ use of software\
173
+ \ that relies on algorithmic decision-making may violate existing requirements\
174
+ \ \nunder Title I of the Americans with Disabilities Act (“ADA”). This technical\
175
+ \ assistance also provides practical"
176
+ - "Discrimination \nProtections \n \n WHAT SHOULD BE EXPECTED OF AUTOMATED\
177
+ \ SYSTEMS\nThe expectations for automated systems are meant to serve as a blueprint\
178
+ \ for the development of additional \ntechnical standards and practices that are\
179
+ \ tailored for particular sectors and contexts. \nDemonstrate that the system\
180
+ \ protects against algorithmic discrimination \nIndependent evaluation. As described\
181
+ \ in the section on Safe and Effective Systems, entities should allow \nindependent\
182
+ \ evaluation of potential algorithmic discrimination caused by automated systems\
183
+ \ they use or"
184
+ - "where possible, available before the harm occurs. Time-critical systems include,\
185
+ \ but are not limited to, \nvoting-related systems, automated building access\
186
+ \ and other access systems, systems that form a critical \ncomponent of healthcare,\
187
+ \ and systems that have the ability to withhold wages or otherwise cause \nimmediate\
188
+ \ financial penalties. \nEffective. The organizational structure surrounding processes\
189
+ \ for consideration and fallback should \nbe designed so that if the human decision-maker\
190
+ \ charged with reassessing a decision determines that it \nshould be overruled,\
191
+ \ the new decision will be effectively enacted. This includes ensuring that the\
192
+ \ new"
193
+ model-index:
194
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
195
+ results:
196
+ - task:
197
+ type: information-retrieval
198
+ name: Information Retrieval
199
+ dataset:
200
+ name: Unknown
201
+ type: unknown
202
+ metrics:
203
+ - type: cosine_accuracy@1
204
+ value: 0.8448275862068966
205
+ name: Cosine Accuracy@1
206
+ - type: cosine_accuracy@3
207
+ value: 0.9482758620689655
208
+ name: Cosine Accuracy@3
209
+ - type: cosine_accuracy@5
210
+ value: 0.9770114942528736
211
+ name: Cosine Accuracy@5
212
+ - type: cosine_accuracy@10
213
+ value: 0.9942528735632183
214
+ name: Cosine Accuracy@10
215
+ - type: cosine_precision@1
216
+ value: 0.8448275862068966
217
+ name: Cosine Precision@1
218
+ - type: cosine_precision@3
219
+ value: 0.3160919540229885
220
+ name: Cosine Precision@3
221
+ - type: cosine_precision@5
222
+ value: 0.19540229885057464
223
+ name: Cosine Precision@5
224
+ - type: cosine_precision@10
225
+ value: 0.09942528735632182
226
+ name: Cosine Precision@10
227
+ - type: cosine_recall@1
228
+ value: 0.8448275862068966
229
+ name: Cosine Recall@1
230
+ - type: cosine_recall@3
231
+ value: 0.9482758620689655
232
+ name: Cosine Recall@3
233
+ - type: cosine_recall@5
234
+ value: 0.9770114942528736
235
+ name: Cosine Recall@5
236
+ - type: cosine_recall@10
237
+ value: 0.9942528735632183
238
+ name: Cosine Recall@10
239
+ - type: cosine_ndcg@10
240
+ value: 0.924865695917767
241
+ name: Cosine Ndcg@10
242
+ - type: cosine_mrr@10
243
+ value: 0.901963601532567
244
+ name: Cosine Mrr@10
245
+ - type: cosine_map@100
246
+ value: 0.9021617783062492
247
+ name: Cosine Map@100
248
+ - type: dot_accuracy@1
249
+ value: 0.8448275862068966
250
+ name: Dot Accuracy@1
251
+ - type: dot_accuracy@3
252
+ value: 0.9482758620689655
253
+ name: Dot Accuracy@3
254
+ - type: dot_accuracy@5
255
+ value: 0.9770114942528736
256
+ name: Dot Accuracy@5
257
+ - type: dot_accuracy@10
258
+ value: 0.9942528735632183
259
+ name: Dot Accuracy@10
260
+ - type: dot_precision@1
261
+ value: 0.8448275862068966
262
+ name: Dot Precision@1
263
+ - type: dot_precision@3
264
+ value: 0.3160919540229885
265
+ name: Dot Precision@3
266
+ - type: dot_precision@5
267
+ value: 0.19540229885057464
268
+ name: Dot Precision@5
269
+ - type: dot_precision@10
270
+ value: 0.09942528735632182
271
+ name: Dot Precision@10
272
+ - type: dot_recall@1
273
+ value: 0.8448275862068966
274
+ name: Dot Recall@1
275
+ - type: dot_recall@3
276
+ value: 0.9482758620689655
277
+ name: Dot Recall@3
278
+ - type: dot_recall@5
279
+ value: 0.9770114942528736
280
+ name: Dot Recall@5
281
+ - type: dot_recall@10
282
+ value: 0.9942528735632183
283
+ name: Dot Recall@10
284
+ - type: dot_ndcg@10
285
+ value: 0.924865695917767
286
+ name: Dot Ndcg@10
287
+ - type: dot_mrr@10
288
+ value: 0.901963601532567
289
+ name: Dot Mrr@10
290
+ - type: dot_map@100
291
+ value: 0.9021617783062492
292
+ name: Dot Map@100
293
+ ---
294
+
295
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
296
+
297
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
298
+
299
+ ## Model Details
300
+
301
+ ### Model Description
302
+ - **Model Type:** Sentence Transformer
303
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
304
+ - **Maximum Sequence Length:** 512 tokens
305
+ - **Output Dimensionality:** 768 tokens
306
+ - **Similarity Function:** Cosine Similarity
307
+ <!-- - **Training Dataset:** Unknown -->
308
+ <!-- - **Language:** Unknown -->
309
+ <!-- - **License:** Unknown -->
310
+
311
+ ### Model Sources
312
+
313
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
314
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
315
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
316
+
317
+ ### Full Model Architecture
318
+
319
+ ```
320
+ SentenceTransformer(
321
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
322
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
323
+ (2): Normalize()
324
+ )
325
+ ```
326
+
327
+ ## Usage
328
+
329
+ ### Direct Usage (Sentence Transformers)
330
+
331
+ First install the Sentence Transformers library:
332
+
333
+ ```bash
334
+ pip install -U sentence-transformers
335
+ ```
336
+
337
+ Then you can load this model and run inference.
338
+ ```python
339
+ from sentence_transformers import SentenceTransformer
340
+
341
+ # Download from the 🤗 Hub
342
+ model = SentenceTransformer("sentence_transformers_model_id")
343
+ # Run inference
344
+ sentences = [
345
+ 'What types of systems are considered time-critical according to the context?',
346
+ 'where possible, available before the harm occurs. Time-critical systems include, but are not limited to, \nvoting-related systems, automated building access and other access systems, systems that form a critical \ncomponent of healthcare, and systems that have the ability to withhold wages or otherwise cause \nimmediate financial penalties. \nEffective. The organizational structure surrounding processes for consideration and fallback should \nbe designed so that if the human decision-maker charged with reassessing a decision determines that it \nshould be overruled, the new decision will be effectively enacted. This includes ensuring that the new',
347
+ 'Discrimination \nProtections \n \n WHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations for automated systems are meant to serve as a blueprint for the development of additional \ntechnical standards and practices that are tailored for particular sectors and contexts. \nDemonstrate that the system protects against algorithmic discrimination \nIndependent evaluation. As described in the section on Safe and Effective Systems, entities should allow \nindependent evaluation of potential algorithmic discrimination caused by automated systems they use or',
348
+ ]
349
+ embeddings = model.encode(sentences)
350
+ print(embeddings.shape)
351
+ # [3, 768]
352
+
353
+ # Get the similarity scores for the embeddings
354
+ similarities = model.similarity(embeddings, embeddings)
355
+ print(similarities.shape)
356
+ # [3, 3]
357
+ ```
358
+
359
+ <!--
360
+ ### Direct Usage (Transformers)
361
+
362
+ <details><summary>Click to see the direct usage in Transformers</summary>
363
+
364
+ </details>
365
+ -->
366
+
367
+ <!--
368
+ ### Downstream Usage (Sentence Transformers)
369
+
370
+ You can finetune this model on your own dataset.
371
+
372
+ <details><summary>Click to expand</summary>
373
+
374
+ </details>
375
+ -->
376
+
377
+ <!--
378
+ ### Out-of-Scope Use
379
+
380
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
381
+ -->
382
+
383
+ ## Evaluation
384
+
385
+ ### Metrics
386
+
387
+ #### Information Retrieval
388
+
389
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
390
+
391
+ | Metric | Value |
392
+ |:--------------------|:-----------|
393
+ | cosine_accuracy@1 | 0.8448 |
394
+ | cosine_accuracy@3 | 0.9483 |
395
+ | cosine_accuracy@5 | 0.977 |
396
+ | cosine_accuracy@10 | 0.9943 |
397
+ | cosine_precision@1 | 0.8448 |
398
+ | cosine_precision@3 | 0.3161 |
399
+ | cosine_precision@5 | 0.1954 |
400
+ | cosine_precision@10 | 0.0994 |
401
+ | cosine_recall@1 | 0.8448 |
402
+ | cosine_recall@3 | 0.9483 |
403
+ | cosine_recall@5 | 0.977 |
404
+ | cosine_recall@10 | 0.9943 |
405
+ | cosine_ndcg@10 | 0.9249 |
406
+ | cosine_mrr@10 | 0.902 |
407
+ | **cosine_map@100** | **0.9022** |
408
+ | dot_accuracy@1 | 0.8448 |
409
+ | dot_accuracy@3 | 0.9483 |
410
+ | dot_accuracy@5 | 0.977 |
411
+ | dot_accuracy@10 | 0.9943 |
412
+ | dot_precision@1 | 0.8448 |
413
+ | dot_precision@3 | 0.3161 |
414
+ | dot_precision@5 | 0.1954 |
415
+ | dot_precision@10 | 0.0994 |
416
+ | dot_recall@1 | 0.8448 |
417
+ | dot_recall@3 | 0.9483 |
418
+ | dot_recall@5 | 0.977 |
419
+ | dot_recall@10 | 0.9943 |
420
+ | dot_ndcg@10 | 0.9249 |
421
+ | dot_mrr@10 | 0.902 |
422
+ | dot_map@100 | 0.9022 |
423
+
424
+ <!--
425
+ ## Bias, Risks and Limitations
426
+
427
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
428
+ -->
429
+
430
+ <!--
431
+ ### Recommendations
432
+
433
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
434
+ -->
435
+
436
+ ## Training Details
437
+
438
+ ### Training Dataset
439
+
440
+ #### Unnamed Dataset
441
+
442
+
443
+ * Size: 522 training samples
444
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
445
+ * Approximate statistics based on the first 522 samples:
446
+ | | sentence_0 | sentence_1 |
447
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
448
+ | type | string | string |
449
+ | details | <ul><li>min: 11 tokens</li><li>mean: 19.05 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 116.38 tokens</li><li>max: 161 tokens</li></ul> |
450
+ * Samples:
451
+ | sentence_0 | sentence_1 |
452
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
453
+ | <code>What is the purpose of the AI Bill of Rights mentioned in the context?</code> | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
454
+ | <code>When was the Blueprint for an AI Bill of Rights published?</code> | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
455
+ | <code>What is the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?</code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered <br>world.” Its release follows a year of public engagement to inform this initiative. The framework is available <br>online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights <br>About the Office of Science and Technology Policy <br>The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology</code> |
456
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
457
+ ```json
458
+ {
459
+ "loss": "MultipleNegativesRankingLoss",
460
+ "matryoshka_dims": [
461
+ 768,
462
+ 512,
463
+ 256,
464
+ 128,
465
+ 64
466
+ ],
467
+ "matryoshka_weights": [
468
+ 1,
469
+ 1,
470
+ 1,
471
+ 1,
472
+ 1
473
+ ],
474
+ "n_dims_per_step": -1
475
+ }
476
+ ```
477
+
478
+ ### Training Hyperparameters
479
+ #### Non-Default Hyperparameters
480
+
481
+ - `eval_strategy`: steps
482
+ - `per_device_train_batch_size`: 20
483
+ - `per_device_eval_batch_size`: 20
484
+ - `num_train_epochs`: 5
485
+ - `multi_dataset_batch_sampler`: round_robin
486
+
487
+ #### All Hyperparameters
488
+ <details><summary>Click to expand</summary>
489
+
490
+ - `overwrite_output_dir`: False
491
+ - `do_predict`: False
492
+ - `eval_strategy`: steps
493
+ - `prediction_loss_only`: True
494
+ - `per_device_train_batch_size`: 20
495
+ - `per_device_eval_batch_size`: 20
496
+ - `per_gpu_train_batch_size`: None
497
+ - `per_gpu_eval_batch_size`: None
498
+ - `gradient_accumulation_steps`: 1
499
+ - `eval_accumulation_steps`: None
500
+ - `torch_empty_cache_steps`: None
501
+ - `learning_rate`: 5e-05
502
+ - `weight_decay`: 0.0
503
+ - `adam_beta1`: 0.9
504
+ - `adam_beta2`: 0.999
505
+ - `adam_epsilon`: 1e-08
506
+ - `max_grad_norm`: 1
507
+ - `num_train_epochs`: 5
508
+ - `max_steps`: -1
509
+ - `lr_scheduler_type`: linear
510
+ - `lr_scheduler_kwargs`: {}
511
+ - `warmup_ratio`: 0.0
512
+ - `warmup_steps`: 0
513
+ - `log_level`: passive
514
+ - `log_level_replica`: warning
515
+ - `log_on_each_node`: True
516
+ - `logging_nan_inf_filter`: True
517
+ - `save_safetensors`: True
518
+ - `save_on_each_node`: False
519
+ - `save_only_model`: False
520
+ - `restore_callback_states_from_checkpoint`: False
521
+ - `no_cuda`: False
522
+ - `use_cpu`: False
523
+ - `use_mps_device`: False
524
+ - `seed`: 42
525
+ - `data_seed`: None
526
+ - `jit_mode_eval`: False
527
+ - `use_ipex`: False
528
+ - `bf16`: False
529
+ - `fp16`: False
530
+ - `fp16_opt_level`: O1
531
+ - `half_precision_backend`: auto
532
+ - `bf16_full_eval`: False
533
+ - `fp16_full_eval`: False
534
+ - `tf32`: None
535
+ - `local_rank`: 0
536
+ - `ddp_backend`: None
537
+ - `tpu_num_cores`: None
538
+ - `tpu_metrics_debug`: False
539
+ - `debug`: []
540
+ - `dataloader_drop_last`: False
541
+ - `dataloader_num_workers`: 0
542
+ - `dataloader_prefetch_factor`: None
543
+ - `past_index`: -1
544
+ - `disable_tqdm`: False
545
+ - `remove_unused_columns`: True
546
+ - `label_names`: None
547
+ - `load_best_model_at_end`: False
548
+ - `ignore_data_skip`: False
549
+ - `fsdp`: []
550
+ - `fsdp_min_num_params`: 0
551
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
552
+ - `fsdp_transformer_layer_cls_to_wrap`: None
553
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
554
+ - `deepspeed`: None
555
+ - `label_smoothing_factor`: 0.0
556
+ - `optim`: adamw_torch
557
+ - `optim_args`: None
558
+ - `adafactor`: False
559
+ - `group_by_length`: False
560
+ - `length_column_name`: length
561
+ - `ddp_find_unused_parameters`: None
562
+ - `ddp_bucket_cap_mb`: None
563
+ - `ddp_broadcast_buffers`: False
564
+ - `dataloader_pin_memory`: True
565
+ - `dataloader_persistent_workers`: False
566
+ - `skip_memory_metrics`: True
567
+ - `use_legacy_prediction_loop`: False
568
+ - `push_to_hub`: False
569
+ - `resume_from_checkpoint`: None
570
+ - `hub_model_id`: None
571
+ - `hub_strategy`: every_save
572
+ - `hub_private_repo`: False
573
+ - `hub_always_push`: False
574
+ - `gradient_checkpointing`: False
575
+ - `gradient_checkpointing_kwargs`: None
576
+ - `include_inputs_for_metrics`: False
577
+ - `eval_do_concat_batches`: True
578
+ - `fp16_backend`: auto
579
+ - `push_to_hub_model_id`: None
580
+ - `push_to_hub_organization`: None
581
+ - `mp_parameters`:
582
+ - `auto_find_batch_size`: False
583
+ - `full_determinism`: False
584
+ - `torchdynamo`: None
585
+ - `ray_scope`: last
586
+ - `ddp_timeout`: 1800
587
+ - `torch_compile`: False
588
+ - `torch_compile_backend`: None
589
+ - `torch_compile_mode`: None
590
+ - `dispatch_batches`: None
591
+ - `split_batches`: None
592
+ - `include_tokens_per_second`: False
593
+ - `include_num_input_tokens_seen`: False
594
+ - `neftune_noise_alpha`: None
595
+ - `optim_target_modules`: None
596
+ - `batch_eval_metrics`: False
597
+ - `eval_on_start`: False
598
+ - `eval_use_gather_object`: False
599
+ - `batch_sampler`: batch_sampler
600
+ - `multi_dataset_batch_sampler`: round_robin
601
+
602
+ </details>
603
+
604
+ ### Training Logs
605
+ | Epoch | Step | cosine_map@100 |
606
+ |:------:|:----:|:--------------:|
607
+ | 1.0 | 27 | 0.8792 |
608
+ | 1.8519 | 50 | 0.8950 |
609
+ | 2.0 | 54 | 0.9011 |
610
+ | 3.0 | 81 | 0.9022 |
611
+
612
+
613
+ ### Framework Versions
614
+ - Python: 3.10.12
615
+ - Sentence Transformers: 3.1.1
616
+ - Transformers: 4.44.2
617
+ - PyTorch: 2.4.1+cu121
618
+ - Accelerate: 0.34.2
619
+ - Datasets: 2.19.2
620
+ - Tokenizers: 0.19.1
621
+
622
+ ## Citation
623
+
624
+ ### BibTeX
625
+
626
+ #### Sentence Transformers
627
+ ```bibtex
628
+ @inproceedings{reimers-2019-sentence-bert,
629
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
630
+ author = "Reimers, Nils and Gurevych, Iryna",
631
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
632
+ month = "11",
633
+ year = "2019",
634
+ publisher = "Association for Computational Linguistics",
635
+ url = "https://arxiv.org/abs/1908.10084",
636
+ }
637
+ ```
638
+
639
+ #### MatryoshkaLoss
640
+ ```bibtex
641
+ @misc{kusupati2024matryoshka,
642
+ title={Matryoshka Representation Learning},
643
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
644
+ year={2024},
645
+ eprint={2205.13147},
646
+ archivePrefix={arXiv},
647
+ primaryClass={cs.LG}
648
+ }
649
+ ```
650
+
651
+ #### MultipleNegativesRankingLoss
652
+ ```bibtex
653
+ @misc{henderson2017efficient,
654
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
655
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
656
+ year={2017},
657
+ eprint={1705.00652},
658
+ archivePrefix={arXiv},
659
+ primaryClass={cs.CL}
660
+ }
661
+ ```
662
+
663
+ <!--
664
+ ## Glossary
665
+
666
+ *Clearly define terms in order to be accessible across audiences.*
667
+ -->
668
+
669
+ <!--
670
+ ## Model Card Authors
671
+
672
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
673
+ -->
674
+
675
+ <!--
676
+ ## Model Card Contact
677
+
678
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
679
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d20588978537f32f0d049b3cdb476f8781f260a6078a80895335e28ea660212a
3
+ size 435588776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff