--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tetis-textmine-2024-camembert-large-based results: [] --- --- license: cc-by-nc-4.0 --- # [TETIS](https://www.umr-tetis.fr) @ [Challenge TextMine 2024](https://textmine.sciencesconf.org/resource/page/id/9) --- ## This model is a NER based on Camembert-Large for the Kaggle Competition (in French): https://www.kaggle.com/competitions/defi-textmine-2024/ This model could be re-use with HuggingFace transormers pipeline. To use it, please refer to its [Github](https://github.com/tetis-nlp/tetis-challenge_textmine_2024) --- | Participants | |----------------------| | Rémy Decoupes | | Roberto Interdonato | | Rodrique Kafando | | Mehtab Syed Alam | | Maguelonne Teisseire | | Mathieu Roche | | Sarah Valentin | --- # tetis-textmine-2024-camembert-large-based This model is a fine-tuned version of [camembert/camembert-large](https://huggingface.co/camembert/camembert-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1106 - Precision: 0.9327 - Recall: 0.9471 - F1: 0.9398 - Accuracy: 0.9843 - Aucun F1: 0.9434 - Geogfeat F1: 0.9193 - Geogfeat geogname F1: 0.9554 - Geogname F1: 0.9133 - Name geogname F1: 0.9519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Aucun F1 | Geogfeat F1 | Geogfeat geogname F1 | Geogname F1 | Name geogname F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:--------:|:-----------:|:--------------------:|:-----------:|:----------------:| | No log | 1.0 | 192 | 0.1045 | 0.9171 | 0.9369 | 0.9269 | 0.9828 | 0.9303 | 0.8943 | 0.9509 | 0.9174 | 0.9373 | | No log | 2.0 | 384 | 0.1029 | 0.9223 | 0.9471 | 0.9345 | 0.9830 | 0.9339 | 0.9170 | 0.9522 | 0.9419 | 0.9377 | | 0.0072 | 3.0 | 576 | 0.0952 | 0.9136 | 0.9466 | 0.9298 | 0.9840 | 0.9226 | 0.8993 | 0.9587 | 0.9440 | 0.9571 | | 0.0072 | 4.0 | 768 | 0.1054 | 0.9347 | 0.9409 | 0.9378 | 0.9838 | 0.9380 | 0.9256 | 0.9603 | 0.9164 | 0.9433 | | 0.0072 | 5.0 | 960 | 0.1165 | 0.9229 | 0.9347 | 0.9288 | 0.9814 | 0.9328 | 0.9013 | 0.9441 | 0.9060 | 0.9451 | | 0.0071 | 6.0 | 1152 | 0.1070 | 0.9306 | 0.9462 | 0.9383 | 0.9840 | 0.9419 | 0.9144 | 0.9487 | 0.9213 | 0.9533 | | 0.0071 | 7.0 | 1344 | 0.1037 | 0.9285 | 0.9453 | 0.9368 | 0.9844 | 0.9392 | 0.9100 | 0.9534 | 0.9271 | 0.9507 | | 0.0013 | 8.0 | 1536 | 0.1127 | 0.9335 | 0.9475 | 0.9405 | 0.9841 | 0.9451 | 0.9175 | 0.9505 | 0.9222 | 0.9520 | | 0.0013 | 9.0 | 1728 | 0.1110 | 0.9356 | 0.9488 | 0.9422 | 0.9849 | 0.9452 | 0.9195 | 0.9571 | 0.9186 | 0.9572 | | 0.0013 | 10.0 | 1920 | 0.1106 | 0.9327 | 0.9471 | 0.9398 | 0.9843 | 0.9434 | 0.9193 | 0.9554 | 0.9133 | 0.9519 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3