pico / model.py
rdiehlmartinez's picture
Upload Pico
6ad6e93 verified
raw
history blame
18.3 kB
"""
Beep Boop - this is the Pico Model: a lightweight transformer-based language model. Pico uses a
a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
Everything is written with a modular design for easy modification and experimentation.
Key features:
- RMSNorm for layer normalization
- Rotary Positional Embeddings (RoPE)
- Multi-head attention with KV-cache support
- SwiGLU activation function
- Residual connections throughout
- KV-cache for faster autoregressive generation
References:
- RoPE: https://arxiv.org/abs/2104.09864
- SwiGLU: https://arxiv.org/abs/2002.05202
- LLAMA: https://arxiv.org/abs/2302.13971
Adapted from:
- OLMO: https://github.com/allenai/OLMo
- LLAMA: https://github.com/meta/llama
"""
import math
import torch
import torch.backends.cuda
import torch.nn as nn
import torch.nn.functional as F
from transformers import PretrainedConfig, PreTrainedModel
from dataclasses import asdict
from config import ModelConfig
from typing import Tuple, Optional, Dict, Any
import lightning as L
########################################################
#
# Layer Normalization
#
########################################################
class RMSNorm(torch.nn.Module):
"""Root Mean Square Layer Normalization.
A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
resulting in improved stability and performance.
Args:
config (ModelConfig): Configuration object containing normalization parameters
- config.norm.eps: Small constant for numerical stability
- config.d_model: Model dimension for the weight parameter
References:
https://arxiv.org/abs/1910.07467
"""
def __init__(self, config: ModelConfig):
super().__init__()
self.eps = config.norm_eps
self.weight = nn.Parameter(torch.ones(config.d_model))
def _norm(self, x: torch.Tensor) -> torch.Tensor:
"""
Normalizes the input tensor by its RMS value.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies RMS normalization to the input tensor and scales it by the weight parameter.
"""
output = self._norm(x.float()).type_as(x)
return output * self.weight
########################################################
#
# Positional Embedding
#
########################################################
class RoPE(nn.Module):
"""Rotary Positional Embeddings (RoPE).
Implements position-dependent rotation of keys and queries in attention mechanism,
allowing better modeling of relative positions in sequences. Uses complex number
operations for efficient rotation.
Args:
config (ModelConfig): Model configuration containing:
- config.position_emb.theta: Base for frequency computation
- config.d_model: Model dimension
- config.attention.n_heads: Number of attention heads
- config.max_seq_len: Maximum sequence length
fabric (L.Fabric): Lightning Fabric instance for device management
References:
https://arxiv.org/abs/2104.09864
"""
_freqs_cis: torch.Tensor = None
def __init__(self, config: ModelConfig, fabric: L.Fabric):
super().__init__()
self.fabric = fabric
self.theta = config.position_emb_theta
self.dim = config.d_model // config.attention_n_heads
max_seq_len = config.max_seq_len
# only gets set once, and then reused for all RoPE instances
if RoPE._freqs_cis is None:
RoPE._freqs_cis = fabric.to_device(
self._setup_freqs_cis(max_seq_len, self.theta, self.dim)
)
@classmethod
def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
"""
Sets up the complex frequency tensor that is used to compute the RoPE embeddings.
Note other implementations will use cos and sin directly, but using the complex
number representation is (probably?) more efficient:
e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
"""
_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
positions = torch.arange(
seq_len,
)
freqs = torch.outer(positions, _freqs)
return torch.polar(torch.ones_like(freqs), freqs) # complex64
def get_freqs_cis(
self, input_shape: torch.Size, start_pos: int, end_pos: int
) -> torch.Tensor:
"""
Reshapes the frequency tensor to be broadcastable with the input tensor.
"""
_freqs_cis = RoPE._freqs_cis[start_pos:end_pos]
ndim = len(input_shape)
assert 0 <= 1 < ndim
assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
# TODO: Check whether this is correct (might be able to remove this)
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
return _freqs_cis.view(*shape)
def apply_rotary_emb(
self,
queries: torch.Tensor,
keys: torch.Tensor,
start_pos: Optional[int] = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Applies the rotary positional embeddings to the input tensors via complex num multiplication
NOTE: The start_pos is used during inference to only apply the RoPE embeddings to the new tokens.
"""
queries_ = torch.view_as_complex(
queries.float().reshape(*queries.shape[:-1], -1, 2)
)
keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
input_shape = (
queries_.shape
) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
freqs_start_pos = start_pos
freqs_end_pos = freqs_start_pos + queries_.shape[1]
freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
########################################################
#
# Attention
#
########################################################
class Attention(nn.Module):
"""Multi-head Attention with Group Query Attention support.
Implements scaled dot-product attention and supports:
- Grouped Query Attention (GQA)
- Key-Value caching for efficient inference
- RoPE integration
Args:
config (ModelConfig): Configuration containing:
- config.attention.n_heads: Number of attention heads
- config.attention.n_kv_heads: Number of key/value heads
- config.d_model: Model dimension
- config.batch_size: Maximum batch size
- config.max_seq_len: Maximum sequence length
fabric (L.Fabric): Lightning Fabric instance
Shape:
- Input: (batch_size, seq_len, d_model)
- Output: (batch_size, seq_len, d_model)
"""
def __init__(self, config: ModelConfig, fabric: L.Fabric):
super().__init__()
self.fabric = fabric
self.n_heads = config.attention_n_heads
self.n_kv_heads = config.attention_n_kv_heads
self.batch_size = config.batch_size
self.max_seq_len = config.max_seq_len
d_model = config.d_model
self.head_dim = d_model // self.n_heads
self.n_rep = self.n_heads // self.n_kv_heads
self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
self.rope = RoPE(config, fabric)
# caches for inference; only used if inference_mode is enabled
self.k_cache = None
self.v_cache = None
def repeat_kv(self, original_tensor: torch.Tensor) -> torch.Tensor:
"""
Repeats key/value heads to match query heads in Group Query Attention (GQA).
In GQA, we use fewer key/value heads than query heads to reduce memory usage.
Each key/value head needs to be repeated to match the number of query heads.
"""
bsz, seq_len, n_kv_heads, head_dim = original_tensor.shape
if self.n_rep == 1:
return original_tensor
return (
original_tensor[:, :, :, None, :] # Add a new dimension after n_kv_heads
.expand(
bsz, seq_len, n_kv_heads, self.n_rep, head_dim
) # Expand this new dimension to size n_rep
.reshape(
bsz, seq_len, n_kv_heads * self.n_rep, head_dim
) # Flatten this new dimension into n_kv_heads
)
def forward(
self,
input: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inference_mode: Optional[bool] = False,
start_pos: Optional[int] = 0,
):
bsz, seq_len, _ = input.shape
_queries, _keys, _values = (
self.q_proj(input),
self.k_proj(input),
self.v_proj(input),
)
_queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
_keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
_values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
# apply rotary positional embeddings
if inference_mode:
_queries, _keys = self.rope.apply_rotary_emb(_queries, _keys, start_pos)
else:
_queries, _keys = self.rope.apply_rotary_emb(_queries, _keys)
if inference_mode and start_pos > 0:
if self.k_cache is None and self.v_cache is None:
self.k_cache = torch.zeros(
(self.batch_size, self.max_seq_len, self.n_kv_heads, self.head_dim)
)
self.v_cache = torch.zeros(
(self.batch_size, self.max_seq_len, self.n_kv_heads, self.head_dim)
)
self.cache_k[:bsz, start_pos : start_pos + seq_len] = _keys
self.cache_v[:bsz, start_pos : start_pos + seq_len] = _values
keys = self.cache_k[:bsz, : start_pos + seq_len]
values = self.cache_v[:bsz, : start_pos + seq_len]
else:
keys = _keys
values = _values
# repeat k/v heads if n_kv_heads < n_heads
keys = self.repeat_kv(keys) # (bs, (cache_len) + seq_len, n_heads, head_dim)
values = self.repeat_kv(
values
) # (bs, (cache_len) + seq_len, n_heads, head_dim)
queries = _queries.transpose(1, 2) # (bs, n_heads, seq_len, head_dim)
keys = keys.transpose(1, 2) # (bs, n_heads, (cache_len) + seq_len, head_dim)
values = values.transpose(
1, 2
) # (bs, n_heads, (cache_len) + seq_len, head_dim)
scores = torch.matmul(queries, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores + mask # (bs, n_heads, seq_len, (cache_len) + seq_len)
scores = F.softmax(scores.float(), dim=-1).type_as(queries)
output = torch.matmul(scores, values) # (bs, n_heads, seq_len, head_dim)
output = output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
return self.o_proj(output)
########################################################
#
# SwiGLU (Combines MLP and Activation)
#
########################################################
class SwiGLU(nn.Module):
"""SwiGLU Activation Function with Linear Projections.
Implements the SwiGLU activation function combined with linear transformations,
serving as the feed-forward network in transformer blocks.
Args:
config (ModelConfig): Configuration containing:
- config.d_model: Model dimension
- config.activation.hidden_dim: Hidden dimension (typically 4 * d_model)
References:
https://arxiv.org/abs/2002.05202
"""
def __init__(self, config: ModelConfig):
super().__init__()
model_dim = config.d_model
act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
########################################################
#
# PicoBlock and the Pico Model
#
########################################################
class PicoBlock(nn.Module):
"""Single Transformer Block with Attention and Feed-forward layers.
Implements a standard transformer block with:
- Multi-head attention with normalization and residual connection
- SwiGLU feed-forward network with normalization and residual connection
Args:
config (ModelConfig): Model configuration
fabric (L.Fabric): Lightning Fabric instance
"""
def __init__(self, config: ModelConfig, fabric: L.Fabric):
super().__init__()
self.attention = Attention(config, fabric)
self.feed_forward = SwiGLU(config)
self.attention_norm = RMSNorm(config)
self.swiglu_norm = RMSNorm(config)
def forward(
self,
input: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inference_mode: Optional[bool] = False,
start_pos: Optional[int] = 0,
):
h = input + self.attention(
self.attention_norm(input), mask, inference_mode, start_pos
)
out = h + self.feed_forward(self.swiglu_norm(h))
return out
########################################################
#
# Pico Model
#
########################################################
class PicoConfig(PretrainedConfig):
model_type = "pico"
def __init__(self, model_config: Optional[ModelConfig] = None, tokenizer_name: Optional[str] = None, **kwargs):
super().__init__(**kwargs, tokenizer_class=tokenizer_name)
# NOTE: All we do here is flatten the ModelConfig to a dict, and then set all the attributes of the PicoConfig class
# We do this to make PicoConfig a valid HuggingFace config class.
if model_config is not None:
def flatten_dict(d: Dict[str, Any], prefix: str = '') -> Dict[str, Any]:
"""Recursively flatten nested dictionaries"""
items = {}
for k, v in d.items():
new_key = f"{prefix}{k}" if prefix else k
if isinstance(v, dict):
# Recurse into nested dictionaries with updated prefix
items.update(flatten_dict(v, f"{new_key}_"))
else:
items[new_key] = v
return items
# Convert ModelConfig to dict and flatten it
config_dict = asdict(model_config)
flattened = flatten_dict(config_dict)
# Add the tokenizer config to the flattened dict
# Set all flattened attributes
for key, value in flattened.items():
setattr(self, key, value)
class Pico(PreTrainedModel):
"""The Pico model implements a LLAMA-style architecture.
Architecture Components:
1. Input Processing
- Token embeddings for vocabulary representation
- Rotary Positional Embeddings (RoPE) for position encoding
2. Transformer Blocks (repeated n_layers times)
- Multi-head attention with optional Group Query Attention (GQA)
- RMSNorm for improved stability
- SwiGLU activation in feed-forward networks
- Residual connections throughout
3. Output Processing
- Final RMSNorm layer
- Linear projection to vocabulary size
Args:
config (ModelConfig): Complete model configuration
fabric (L.Fabric): Lightning Fabric instance for device management
Example:
>>> config = ModelConfig(vocab_size=32000, n_layers=12)
>>> model = Pico(config, fabric)
>>> output = model(input_ids, inference_mode=False)
"""
config_class = PicoConfig
def __init__(self, config: PicoConfig, fabric: L.Fabric):
super().__init__(config)
self.config = config
self.fabric = fabric
self.vocab_size = config.vocab_size
self.n_layers = config.n_layers
self.embedding_proj = nn.Embedding(self.vocab_size, config.d_model)
self.layers = nn.ModuleList(
[PicoBlock(config, fabric) for _ in range(self.n_layers)]
)
self.output_norm = RMSNorm(config)
# NOTE: the de-embedding projection is not tied to the embedding projection
self.de_embedding_proj = nn.Linear(config.d_model, self.vocab_size, bias=False)
def forward(
self,
input_ids: torch.Tensor,
inference_mode: Optional[bool] = False,
start_pos: Optional[int] = 0,
):
seq_len = input_ids.shape[-1]
h = self.embedding_proj(input_ids)
mask = None
if seq_len > 1:
mask = self.fabric.to_device(torch.full((seq_len, seq_len), float("-inf")))
mask = torch.triu(mask, diagonal=1)
if inference_mode:
# when inference, we only want to attend to the new tokens (after start_pos)
mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask]).type_as(
h
)
for layer in self.layers:
h = layer(h, mask, inference_mode, start_pos)
h = self.output_norm(h)
output = self.de_embedding_proj(h).float()
return output
PicoConfig.register_for_auto_class()
Pico.register_for_auto_class("AutoModel")