Changes to steps
Browse files- .gitattributes +3 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +1 -1
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -2,11 +2,13 @@
|
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
5 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
10 |
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
*.npy filter=lfs diff=lfs merge=lfs -text
|
@@ -20,6 +22,7 @@
|
|
20 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
23 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
|
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
*.npy filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1949.79 +/- 89.43
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 129265
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71feb0f55e72ef3558818d48c62dd8302c0c4f3bf452a38b6fc4d6df59bb7158
|
3 |
size 129265
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -64,7 +64,7 @@
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
@@ -73,7 +73,7 @@
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
@@ -89,7 +89,7 @@
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f5688cca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f5688cd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f5688cdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f5688ce50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9f5688cee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9f5688cf70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9f5688d040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f5688d0d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9f5688d160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f5688d1f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f5688d280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f5688d310>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9f56889cc0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1678444741990416025,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMGMqD9PPA4/mFUevL5Tvz9msOo/fOzNPzaohT+yiqy/xkCMv6iO6r6UXl8/eHHJv4jgIz+5Mn0/PosLv7lDPj9BOqy/lJ1Fvna9IT+deKs8E3hLvyckxL8/uWY/8im/voElXr91RhQ/D8G+PmkKLj+vnru+dNK4v04UXD/rl1C/68SMvgpnjjxuWLc+ya82vvLIMj4H6jg/Sx7WPkz/+757geQ+kw4mPws5qD6X82M/pSyJP1fjBT9ytSE/XY4BPiT4SD8eJyw81tU5Pjabrz6BJV6/dUYUPw/Bvj5pCi4/8V/BP7+JuD5CCHc+IYmUP8wPRT90lK89Dp04P+RJxb+l6J6/HAwHP6o+zz4pYa++OtmKP0MQaD6ilQY/vmsbvujexL9snxs/HXUGP10ynL+M0rG/7uoMP2trWD8yo8i+gSVev3VGFD8Pwb4+aQouP+8pGj+1GqU+iWORPgJTSj/wE/4+5zdWPy5+QD9evRm/g5xmv450kb/ar3w/pQdIv9MVZz7VXxs/xh4qv6yu8z5A9Zq9HeRNv2FAIj/eE+E884dAP58ghL+E2Zk/B6vLPoElXr91RhQ/D8G+PmkKLj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABpxBI1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAr+yrPQAAAAC0Qve/AAAAAKaqr7wAAAAAGH3xPwAAAAAJOes8AAAAAOPb/D8AAAAA7B3RvQAAAADb5Ou/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLbbNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIrxOD0AAAAARI7kvwAAAADkiA0+AAAAAIaN3z8AAAAAWNVhPQAAAAB7twBAAAAAAENtC74AAAAAey4AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADq4qjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB2Nk69AAAAABvl878AAAAAFqcPvAAAAACi++c/AAAAAP9YfD0AAAAADq3vPwAAAACh/Tw9AAAAAJYHAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWatW0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbwoPPgAAAAB4deK/AAAAAP0b+b0AAAAAhZL5PwAAAABRAgg+AAAAAJlv9j8AAAAAU1vfvQAAAACubOW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtmx3FDOTuMAWyUTegDjAF0lEdAqjeo84gieXV9lChoBkdAlkZ/9YOlPGgHTegDaAhHQKo6PcmjTKF1fZQoaAZHQJZpmiYb83xoB03oA2gIR0CqP3LThHbzdX2UKGgGR0CWzyVv/BFeaAdN6ANoCEdAqkGIoqkM1HV9lChoBkdAltDsU7CBPWgHTegDaAhHQKpEfFVDKHR1fZQoaAZHQIj4DtVrAQBoB03oA2gIR0CqSD15rxiHdX2UKGgGR0CbbhEK3NLUaAdN6ANoCEdAqk8uMKkVOHV9lChoBkdAlBy0VFhG6WgHTegDaAhHQKpRO6kIomZ1fZQoaAZHQJonW9du5z5oB03oA2gIR0CqU5k8aGYbdX2UKGgGR0CVpabADaGpaAdN6ANoCEdAqlYbQ9ic5XV9lChoBkdAmahf+n62v2gHTegDaAhHQKpbMhePaL51fZQoaAZHQJSgdzYEnstoB03oA2gIR0CqXVQB5ooNdX2UKGgGR0CWwROFQEZBaAdN6ANoCEdAql/Np9JBgXV9lChoBkdAmsDiMHbAUWgHTegDaAhHQKpizY7JW/91fZQoaAZHQJKgjGecx0xoB03oA2gIR0CqaoaSDAaedX2UKGgGR0CV+UPoV2zOaAdN6ANoCEdAqmz/+4smOXV9lChoBkdAnH9ZhWo3rGgHTegDaAhHQKpvam6XjVB1fZQoaAZHQJtuWZLIxQBoB03oA2gIR0CqcfZavA45dX2UKGgGR0CZPbTm4iHJaAdN6ANoCEdAqncSSPluFnV9lChoBkdAl76lc+qzaGgHTegDaAhHQKp5Lyf+S8t1fZQoaAZHQJlVWRs/IKdoB03oA2gIR0Cqe6fp2U0OdX2UKGgGR0CZthqBEroXaAdN6ANoCEdAqn5AJeE7GXV9lChoBkdAmZqYMOPNmmgHTegDaAhHQKqFKaPS2IB1fZQoaAZHQJjmTdnCfpVoB03oA2gIR0CqiGWOIZZTdX2UKGgGR0CWZwvg3tKJaAdN6ANoCEdAqouBOJtSAHV9lChoBkdAlxTAwwj+rGgHTegDaAhHQKqOEHLzPKN1fZQoaAZHQJI1EmUnogVoB03oA2gIR0CqkzVA7gbZdX2UKGgGR0CXnXzvqkdnaAdN6ANoCEdAqpVXQOWjXXV9lChoBkdAmYOWPYFqz2gHTegDaAhHQKqXsG7Bfrt1fZQoaAZHQJo9bmaH9FZoB03oA2gIR0CqmkFSKm8/dX2UKGgGR0CWFntozvZzaAdN6ANoCEdAqp/Tn3cpLHV9lChoBkdAmDgQtjCpFWgHTegDaAhHQKqi1G96C191fZQoaAZHQJaAfustCiRoB03oA2gIR0CqpqYVh1DCdX2UKGgGR0CY9ArJKaodaAdN6ANoCEdAqqnaQNkOJHV9lChoBkdAkvdaBI4EOmgHTegDaAhHQKqu8Oe8PFx1fZQoaAZHQJSodoK2KEZoB03oA2gIR0CqsQPaURnOdX2UKGgGR0CUQ6a6z3RHaAdN6ANoCEdAqrNi5wwTNHV9lChoBkdAkgG7XtjTa2gHTegDaAhHQKq27Uy57PZ1fZQoaAZHQJgEyYWtU4toB03oA2gIR0CqvwTguRLcdX2UKGgGR0CXbrffXPJJaAdN6ANoCEdAqsIyQFLWZ3V9lChoBkdAl2/jg/C66WgHTegDaAhHQKrGBP7el9B1fZQoaAZHQJnex+uvECNoB03oA2gIR0CqyVD+irT6dX2UKGgGR0COH4JNTLntaAdN6ANoCEdAqs5tDfFaS3V9lChoBkdAmYWsByS3b2gHTegDaAhHQKrQdzkp7Tl1fZQoaAZHQJlNDNcGC7NoB03oA2gIR0Cq0tVXmvGIdX2UKGgGR0CY7FKfWcz7aAdN6ANoCEdAqtVkq+ajOHV9lChoBkdAmVWeoDPnjmgHTegDaAhHQKrahY1YQrd1fZQoaAZHQJnV86eXiR5oB03oA2gIR0Cq3O5HEuQIdX2UKGgGR0CY1QJP69CeaAdN6ANoCEdAquBuBjFyaXV9lChoBkdAl45G74BV/GgHTegDaAhHQKrkZLsa86F1fZQoaAZHQJHWXqeK8+RoB03oA2gIR0Cq6i+ZgG8mdX2UKGgGR0Ca7GqOcUdraAdN6ANoCEdAquxBaV2RrHV9lChoBkdAm4+Km4y44WgHTegDaAhHQKruslBQemx1fZQoaAZHQJulmKFZgXxoB03oA2gIR0Cq8VWx6fJ4dX2UKGgGR0CbCz0tRNypaAdN6ANoCEdAqvaGPFNtZXV9lChoBkdAl2eEwztTk2gHTegDaAhHQKr4mRRMvh91fZQoaAZHQJZHaj3225RoB03oA2gIR0Cq+2qWLP2PdX2UKGgGR0CYKl5j6N2laAdN6ANoCEdAqv8bDCP6sXV9lChoBkdAmYyWT5ftyGgHTegDaAhHQKsGJskY4yZ1fZQoaAZHQJdHVbOeJ55oB03oA2gIR0CrCC76guh9dX2UKGgGR0CaWirHEMspaAdN6ANoCEdAqwqiDM/yG3V9lChoBkdAlpmFJDmbLGgHTegDaAhHQKsNMutfXwt1fZQoaAZHQJfYRB9kSVZoB03oA2gIR0CrElmdAgPmdX2UKGgGR0CaB5A1NxlyaAdN6ANoCEdAqxRz5XU6P3V9lChoBkdAmiXJyZKFqWgHTegDaAhHQKsW7tQbdad1fZQoaAZHQJgibWAf+0hoB03oA2gIR0CrGd8L0BfbdX2UKGgGR0CWb2cR15jZaAdN6ANoCEdAqyF5CtzS1HV9lChoBkdAnB5KIi1RcmgHTegDaAhHQKskCd+5OJt1fZQoaAZHQJnQaed07r9oB03oA2gIR0CrJnILG7z1dX2UKGgGR0CSPG+hXbM5aAdN6ANoCEdAqyjzZDiOvXV9lChoBkdAnPcXSKFZgWgHTegDaAhHQKst8QYDT0B1fZQoaAZHQJzae36Q/5doB03oA2gIR0CrL//zreImdX2UKGgGR0CdGxE6kqMFaAdN6ANoCEdAqzKCrgflqHV9lChoBkdAnvyPXoTwlWgHTegDaAhHQKs1Aa6z3RJ1fZQoaAZHQJ4VBPUKArhoB03oA2gIR0CrO3S3b212dX2UKGgGR0CfV4iXpnpTaAdN6ANoCEdAqz6bFyaNM3V9lChoBkdAnpkvy08eS2gHTegDaAhHQKtB7haTwDx1fZQoaAZHQJ6662gFotdoB03oA2gIR0CrRHfFaSs9dX2UKGgGR0CainGr0aqCaAdN6ANoCEdAq0mKBqbjLnV9lChoBkdAm1WNpudf9mgHTegDaAhHQKtLlOgQHzJ1fZQoaAZHQJ245da+vhZoB03oA2gIR0CrTgakqMFVdX2UKGgGR0CbeBq1PWQPaAdN6ANoCEdAq1CU+cH4XXV9lChoBkdAm5qYjnmq52gHTegDaAhHQKtV3dpItlJ1fZQoaAZHQJ6mo0sOG0xoB03oA2gIR0CrWNJdrwfAdX2UKGgGR0CaHSn7HhjwaAdN6ANoCEdAq1yRn+Q2dnV9lChoBkdAmjZmhAWznmgHTegDaAhHQKtgSBOHnEF1fZQoaAZHQJyXHZ26kIpoB03oA2gIR0CrZW3rt3OfdX2UKGgGR0CW6ltdiUgTaAdN6ANoCEdAq2eN52QnyHV9lChoBkdAmjaoZVGTcWgHTegDaAhHQKtqBgeA/cF1fZQoaAZHQJokIptrKvFoB03oA2gIR0CrbJo1UEPldX2UKGgGR0CXz+kgOjIraAdN6ANoCEdAq3HL0rbxmXV9lChoBkdAlserWd3B6GgHTegDaAhHQKt0DxH5Jsh1fZQoaAZHQJZlbZTQ3P1oB03oA2gIR0Crd3jzyz5XdX2UKGgGR0CbRYiPyTY/aAdN6ANoCEdAq3tfXyy2QXV9lChoBkdAmE3XMpw0f2gHTegDaAhHQKuBYuOCGvh1fZQoaAZHQJxAR/kNnXdoB03oA2gIR0Crg2Md1dPddX2UKGgGR0CZobhPTG5uaAdN6ANoCEdAq4XBSHdoFnV9lChoBkdAmtIfIn0CimgHTegDaAhHQKuITrM1TBJ1fZQoaAZHQJqdvq4YrJ9oB03oA2gIR0CrjVyamXPadX2UKGgGR0CaLJfZ26kJaAdN6ANoCEdAq49v8XN1Q3VlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ab209f07c9c0101167a5635ccb0d4a2518d4e547fb3794549f246afde475e3e
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39bae77a4fbdaf9a5b987abe6780ed2c4d26df5a253365629f7539a2b561a798
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f52a6080430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f52a60804c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f52a6080550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f52a60805e0>", "_build": "<function ActorCriticPolicy._build at 0x7f52a6080670>", "forward": "<function ActorCriticPolicy.forward at 0x7f52a6080700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f52a6080790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f52a6080820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f52a60808b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f52a6080940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f52a60809d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f52a6080a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f52a6081900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678693541646196832, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGTsTT54jiW/c2XhPsOyrj+Ih32//aVwvSEsAb+6pra+lZkpvzxLlD+vHBK+BXPyPx3Qj79ydKI9nRE4P4zZkD6WjRw/Z1Omv1iYEr8Ia2I+B1GUv2I8Kzyic+A/E3cKvWFxuL9Q1+M+siv3PiD9gL/dkDY/7RSlv1t3eL5H4J8/Sunsvv8ECsB1Yta+qN3Gv1m1Tz/IoR7AepEQQFawOL7xL6O/YjbWPBd+BD9fy2S/c5SFv3J9OT/3gpA/9NrOPoJAKb0cajS/PSCMP2UEoT7JqDE/UNfjPoWSBMAg/YC/U9cIO9+ex76pbBI/lJ18P7nrwL6cQjXAjmyIPfk1hb+Tpvs+Xifcv82jU76ojWfAMBmjv2ehHD0QZ7k+erDBvSBBBb6GGKQ/IQRtPyxUE8DJlTy/fF2Zv89+4D8ILxu9YXG4v1DX4z6yK/c+IP2Av4J3sD+P0YW/HQu4PTRKsz9GpWG/d8oCP1MATb8DU7S/jse+P/Paqb3m5QM/vapCPZnkpr8QK7A+0dw4PzBC8Lw1PD2/R4iIvm/LDb6pfk4/i8LSPr+Bdz9zewM/L+SVv8moMT/O0Q/Asiv3PiD9gL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADpFEQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAT8kNuwAAAAAHE+2/AAAAADasKr0AAAAAmsTdPwAAAAAWXNs9AAAAAF2I2z8AAAAA5NqDvQAAAACPW/y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7BKItgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC/w+z0AAAAA23bqvwAAAAA7tUq6AAAAAFX29z8AAAAArIzXvQAAAABRevU/AAAAAPeiYb0AAAAA5Q7evwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK+UPrEAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5Xww+AAAAANHT7r8AAAAAEyCVPQAAAAAL6vc/AAAAAGjfYr0AAAAAic3fPwAAAACn/PC9AAAAAAMS5r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEv/40AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAynyGPQAAAAD8XOS/AAAAAH2epr0AAAAAgo72PwAAAACTfDA9AAAAAI2K6T8AAAAABFoBvgAAAAA2QfS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxGs1ZTyayMAWyUTegDjAF0lEdArUJKQo1DSnV9lChoBkdAm0fdEw35vmgHTegDaAhHQK1DgUY8+zN1fZQoaAZHQJwHl1zQu29oB03oA2gIR0CtRN6jFhoedX2UKGgGR0CcAn7V8Ti9aAdN6ANoCEdArUdFkFwDNnV9lChoBkdAmZZfRqoIfWgHTegDaAhHQK1SOCr92ox1fZQoaAZHQJcAhoRIz31oB03oA2gIR0CtVDMDW9UTdX2UKGgGR0CY7vj5bhWHaAdN6ANoCEdArVXRQFcIJXV9lChoBkdAmEqodMj/uWgHTegDaAhHQK1YV9G7SRd1fZQoaAZHQJOPQzl90A9oB03oA2gIR0CtY/BE0BOpdX2UKGgGR0CMAhGGVRk3aAdN6ANoCEdArWUlGTcIq3V9lChoBkdAka6cJtzjm2gHTegDaAhHQK1mmJaaCtl1fZQoaAZHQJTrYoOQQtloB03oA2gIR0CtaSVLBbfQdX2UKGgGR0CXnQ+XJHRUaAdN6ANoCEdArXTUtqYZ23V9lChoBkdAlVvuEug6EWgHTegDaAhHQK12DUSZjQR1fZQoaAZHQJNrTDbah6BoB03oA2gIR0Ctd4tEPUaydX2UKGgGR0CWXUkpZwGXaAdN6ANoCEdArXn9jRUm2XV9lChoBkdAmJoc7yQPqmgHTegDaAhHQK2BjezlcQl1fZQoaAZHQJgjLOoo/iZoB03oA2gIR0CtgsUD+zdDdX2UKGgGR0CRkbGiYb84aAdN6ANoCEdArYQVrsSkCXV9lChoBkdAlzATPa+N+GgHTegDaAhHQK2GdNjbzsh1fZQoaAZHQJv1Zb3XZoRoB03oA2gIR0CtkYhoEjgRdX2UKGgGR0Ca5lVTJhfCaAdN6ANoCEdArZN/CXQdCHV9lChoBkdAlw4P0AcT8GgHTegDaAhHQK2VE57PY4B1fZQoaAZHQJoMztQbdadoB03oA2gIR0Ctl3Z7PY4AdX2UKGgGR0CZILWYF7laaAdN6ANoCEdArZ8S0QbuMXV9lChoBkdAmGWWY4Qz12gHTegDaAhHQK2gUAf+0gN1fZQoaAZHQJqKjiR4hU1oB03oA2gIR0CtoaN1yNn5dX2UKGgGR0CXEDar3j+8aAdN6ANoCEdAraQVXNke63V9lChoBkdAnDFlkQPI4mgHTegDaAhHQK2txUEPlMh1fZQoaAZHQJMx6G0u14RoB03oA2gIR0Ctr8okJKJ3dX2UKGgGR0CWYUIznA6/aAdN6ANoCEdArbIeuDBdlnV9lChoBkdAlu2P8AJb+2gHTegDaAhHQK21SAmzByl1fZQoaAZHQJeD0A0bcXZoB03oA2gIR0CtvPkZBLPEdX2UKGgGR0CX8ZV/+bVjaAdN6ANoCEdArb4uaH9FWnV9lChoBkdAlumPIKc/dWgHTegDaAhHQK2/o/SH/Ll1fZQoaAZHQJTcx8hLXcxoB03oA2gIR0CtwjcJMQEqdX2UKGgGR0CT4e7qIJqqaAdN6ANoCEdArcr9CzC1qnV9lChoBkdAmU78Q/X5FmgHTegDaAhHQK3M3Xlr/Kh1fZQoaAZHQJUyKY8dPtVoB03oA2gIR0CtzyXeN1hcdX2UKGgGR0CXrc2RaHKwaAdN6ANoCEdArdMZdyDIzXV9lChoBkdAlmFn/HYHxGgHTegDaAhHQK3fD4i5d4V1fZQoaAZHQJsEO/cnE2poB03oA2gIR0Ct4EHNPgvUdX2UKGgGR0CTW1/giu+zaAdN6ANoCEdAreGW36Q/5nV9lChoBkdAl4eN9H+ZPWgHTegDaAhHQK3kB0EHMU11fZQoaAZHQJFrYeeWfK9oB03oA2gIR0Ct7bfjCHh1dX2UKGgGR0CRncDQJHAiaAdN6ANoCEdAre/JH5Jsf3V9lChoBkdAmBg8NYr8SGgHTegDaAhHQK3yLaoMrmR1fZQoaAZHQJRBoco6S1VoB03oA2gIR0Ct9SVYhdMTdX2UKGgGR0CRZOjnFHawaAdN6ANoCEdArfytKRMewXV9lChoBkdAkihaUNayKWgHTegDaAhHQK394DQJHAh1fZQoaAZHQJTQrXoTwlVoB03oA2gIR0Ct/0JosZpBdX2UKGgGR0CWQBdM0xdqaAdN6ANoCEdArgGnMhX8wnV9lChoBkdAlZF24ZuQ62gHTegDaAhHQK4KVuYQarF1fZQoaAZHQI3Y9x2jfvZoB03oA2gIR0CuDDQRf4RFdX2UKGgGR0CYDykaMrEtaAdN6ANoCEdArg5ymfoRqXV9lChoBkdAly3bTtsvZmgHTegDaAhHQK4SZMnJDE51fZQoaAZHQJXpeQq7ROVoB03oA2gIR0CuGgy+g13udX2UKGgGR0CX7EHZK3/haAdN6ANoCEdArhs7kOqeb3V9lChoBkdAmdVv5Lytm2gHTegDaAhHQK4clqfOD8N1fZQoaAZHQJj25whnrY5oB03oA2gIR0CuHwXyy2QXdX2UKGgGR0CbPN77bcoIaAdN6ANoCEdAriaE/dIoVnV9lChoBkdAmsy5Y9xIa2gHTegDaAhHQK4oMDf3vhJ1fZQoaAZHQJnXzpJPIn1oB03oA2gIR0CuKjyAH3UQdX2UKGgGR0Cbewf642CNaAdN6ANoCEdAri4iquKXOXV9lChoBkdAmgJfb9If82gHTegDaAhHQK43dMj/uLJ1fZQoaAZHQJpGWY5T6zpoB03oA2gIR0CuOLEqMFUydX2UKGgGR0CbMs8wYcebaAdN6ANoCEdArjoPg1m8NHV9lChoBkdAmtaqVyFPBWgHTegDaAhHQK48hYOlO451fZQoaAZHQJowBCw8nu1oB03oA2gIR0CuREZr56+ndX2UKGgGR0Cbhdbuc+aCaAdN6ANoCEdArkV8XtShrXV9lChoBkdAm0f55Rjz7WgHTegDaAhHQK5G9peNT991fZQoaAZHQJqjbMeOn2toB03oA2gIR0CuSp1MEidKdX2UKGgGR0CYIdF2mpEQaAdN6ANoCEdArlf2DOC5E3V9lChoBkdAnZaTqOcUd2gHTegDaAhHQK5Z7iZOSGJ1fZQoaAZHQJtRNaIN3GJoB03oA2gIR0CuXCKLsKLLdX2UKGgGR0CbAdd5IH1OaAdN6ANoCEdArl6ZSP2f03V9lChoBkdAnT+wdGRV62gHTegDaAhHQK5mKcG1QZZ1fZQoaAZHQJl6mPtD2J1oB03oA2gIR0CuZ14XfqHHdX2UKGgGR0CWZte+Eh7maAdN6ANoCEdArmksoF3Y+XV9lChoBkdAlcz8QumJnGgHTegDaAhHQK5s7gZ0jkd1fZQoaAZHQJYpfzBhx5toB03oA2gIR0CudxjbSJCTdX2UKGgGR0CXNkPn0TURaAdN6ANoCEdArnhTh73PA3V9lChoBkdAlywVWjoIOmgHTegDaAhHQK55rPQfIS11fZQoaAZHQJWdUDB/I81oB03oA2gIR0CufBzpX6qLdX2UKGgGR0CYpb2FnIyTaAdN6ANoCEdAroOraPCEYnV9lChoBkdAmtOLAxi5NGgHTegDaAhHQK6E2KO1fE51fZQoaAZHQJpWb69CeEtoB03oA2gIR0CuhipHI6sAdX2UKGgGR0CYTDS+g13uaAdN6ANoCEdArokc0FbFCXV9lChoBkdAmTUoBBAv+WgHTegDaAhHQK6US/0NBnl1fZQoaAZHQJpWI0k4WDZoB03oA2gIR0CulXM2eg+RdX2UKGgGR0CafUVZLZi/aAdN6ANoCEdArpa9ocrAg3V9lChoBkdAmt9tWZJCjWgHTegDaAhHQK6ZEso2GZh1fZQoaAZHQJu/sK8cuJ1oB03oA2gIR0CuoH7QTmGNdX2UKGgGR0Cd6zaIvalDaAdN6ANoCEdArqG3MUypJnV9lChoBkdAnMDwfQrtmmgHTegDaAhHQK6jD6LwWnF1fZQoaAZHQJ1n6uDBdldoB03oA2gIR0CupWrUCq6wdX2UKGgGR0CdVv9pRGc4aAdN6ANoCEdArrCTB9Cu2nV9lChoBkdAmUZLN0NjLGgHTegDaAhHQK6ykcuJ1q51fZQoaAZHQJpPf/3nIQxoB03oA2gIR0Cus/W912aEdX2UKGgGR0CdGecYIjW1aAdN6ANoCEdArrZmAwwj+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f5688cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f5688cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f5688cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f5688ce50>", "_build": "<function ActorCriticPolicy._build at 0x7f9f5688cee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9f5688cf70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9f5688d040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f5688d0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9f5688d160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f5688d1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f5688d280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f5688d310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9f56889cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678444741990416025, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMGMqD9PPA4/mFUevL5Tvz9msOo/fOzNPzaohT+yiqy/xkCMv6iO6r6UXl8/eHHJv4jgIz+5Mn0/PosLv7lDPj9BOqy/lJ1Fvna9IT+deKs8E3hLvyckxL8/uWY/8im/voElXr91RhQ/D8G+PmkKLj+vnru+dNK4v04UXD/rl1C/68SMvgpnjjxuWLc+ya82vvLIMj4H6jg/Sx7WPkz/+757geQ+kw4mPws5qD6X82M/pSyJP1fjBT9ytSE/XY4BPiT4SD8eJyw81tU5Pjabrz6BJV6/dUYUPw/Bvj5pCi4/8V/BP7+JuD5CCHc+IYmUP8wPRT90lK89Dp04P+RJxb+l6J6/HAwHP6o+zz4pYa++OtmKP0MQaD6ilQY/vmsbvujexL9snxs/HXUGP10ynL+M0rG/7uoMP2trWD8yo8i+gSVev3VGFD8Pwb4+aQouP+8pGj+1GqU+iWORPgJTSj/wE/4+5zdWPy5+QD9evRm/g5xmv450kb/ar3w/pQdIv9MVZz7VXxs/xh4qv6yu8z5A9Zq9HeRNv2FAIj/eE+E884dAP58ghL+E2Zk/B6vLPoElXr91RhQ/D8G+PmkKLj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABpxBI1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAr+yrPQAAAAC0Qve/AAAAAKaqr7wAAAAAGH3xPwAAAAAJOes8AAAAAOPb/D8AAAAA7B3RvQAAAADb5Ou/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLbbNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIrxOD0AAAAARI7kvwAAAADkiA0+AAAAAIaN3z8AAAAAWNVhPQAAAAB7twBAAAAAAENtC74AAAAAey4AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADq4qjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB2Nk69AAAAABvl878AAAAAFqcPvAAAAACi++c/AAAAAP9YfD0AAAAADq3vPwAAAACh/Tw9AAAAAJYHAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWatW0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbwoPPgAAAAB4deK/AAAAAP0b+b0AAAAAhZL5PwAAAABRAgg+AAAAAJlv9j8AAAAAU1vfvQAAAACubOW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtmx3FDOTuMAWyUTegDjAF0lEdAqjeo84gieXV9lChoBkdAlkZ/9YOlPGgHTegDaAhHQKo6PcmjTKF1fZQoaAZHQJZpmiYb83xoB03oA2gIR0CqP3LThHbzdX2UKGgGR0CWzyVv/BFeaAdN6ANoCEdAqkGIoqkM1HV9lChoBkdAltDsU7CBPWgHTegDaAhHQKpEfFVDKHR1fZQoaAZHQIj4DtVrAQBoB03oA2gIR0CqSD15rxiHdX2UKGgGR0CbbhEK3NLUaAdN6ANoCEdAqk8uMKkVOHV9lChoBkdAlBy0VFhG6WgHTegDaAhHQKpRO6kIomZ1fZQoaAZHQJonW9du5z5oB03oA2gIR0CqU5k8aGYbdX2UKGgGR0CVpabADaGpaAdN6ANoCEdAqlYbQ9ic5XV9lChoBkdAmahf+n62v2gHTegDaAhHQKpbMhePaL51fZQoaAZHQJSgdzYEnstoB03oA2gIR0CqXVQB5ooNdX2UKGgGR0CWwROFQEZBaAdN6ANoCEdAql/Np9JBgXV9lChoBkdAmsDiMHbAUWgHTegDaAhHQKpizY7JW/91fZQoaAZHQJKgjGecx0xoB03oA2gIR0CqaoaSDAaedX2UKGgGR0CV+UPoV2zOaAdN6ANoCEdAqmz/+4smOXV9lChoBkdAnH9ZhWo3rGgHTegDaAhHQKpvam6XjVB1fZQoaAZHQJtuWZLIxQBoB03oA2gIR0CqcfZavA45dX2UKGgGR0CZPbTm4iHJaAdN6ANoCEdAqncSSPluFnV9lChoBkdAl76lc+qzaGgHTegDaAhHQKp5Lyf+S8t1fZQoaAZHQJlVWRs/IKdoB03oA2gIR0Cqe6fp2U0OdX2UKGgGR0CZthqBEroXaAdN6ANoCEdAqn5AJeE7GXV9lChoBkdAmZqYMOPNmmgHTegDaAhHQKqFKaPS2IB1fZQoaAZHQJjmTdnCfpVoB03oA2gIR0CqiGWOIZZTdX2UKGgGR0CWZwvg3tKJaAdN6ANoCEdAqouBOJtSAHV9lChoBkdAlxTAwwj+rGgHTegDaAhHQKqOEHLzPKN1fZQoaAZHQJI1EmUnogVoB03oA2gIR0CqkzVA7gbZdX2UKGgGR0CXnXzvqkdnaAdN6ANoCEdAqpVXQOWjXXV9lChoBkdAmYOWPYFqz2gHTegDaAhHQKqXsG7Bfrt1fZQoaAZHQJo9bmaH9FZoB03oA2gIR0CqmkFSKm8/dX2UKGgGR0CWFntozvZzaAdN6ANoCEdAqp/Tn3cpLHV9lChoBkdAmDgQtjCpFWgHTegDaAhHQKqi1G96C191fZQoaAZHQJaAfustCiRoB03oA2gIR0CqpqYVh1DCdX2UKGgGR0CY9ArJKaodaAdN6ANoCEdAqqnaQNkOJHV9lChoBkdAkvdaBI4EOmgHTegDaAhHQKqu8Oe8PFx1fZQoaAZHQJSodoK2KEZoB03oA2gIR0CqsQPaURnOdX2UKGgGR0CUQ6a6z3RHaAdN6ANoCEdAqrNi5wwTNHV9lChoBkdAkgG7XtjTa2gHTegDaAhHQKq27Uy57PZ1fZQoaAZHQJgEyYWtU4toB03oA2gIR0CqvwTguRLcdX2UKGgGR0CXbrffXPJJaAdN6ANoCEdAqsIyQFLWZ3V9lChoBkdAl2/jg/C66WgHTegDaAhHQKrGBP7el9B1fZQoaAZHQJnex+uvECNoB03oA2gIR0CqyVD+irT6dX2UKGgGR0COH4JNTLntaAdN6ANoCEdAqs5tDfFaS3V9lChoBkdAmYWsByS3b2gHTegDaAhHQKrQdzkp7Tl1fZQoaAZHQJlNDNcGC7NoB03oA2gIR0Cq0tVXmvGIdX2UKGgGR0CY7FKfWcz7aAdN6ANoCEdAqtVkq+ajOHV9lChoBkdAmVWeoDPnjmgHTegDaAhHQKrahY1YQrd1fZQoaAZHQJnV86eXiR5oB03oA2gIR0Cq3O5HEuQIdX2UKGgGR0CY1QJP69CeaAdN6ANoCEdAquBuBjFyaXV9lChoBkdAl45G74BV/GgHTegDaAhHQKrkZLsa86F1fZQoaAZHQJHWXqeK8+RoB03oA2gIR0Cq6i+ZgG8mdX2UKGgGR0Ca7GqOcUdraAdN6ANoCEdAquxBaV2RrHV9lChoBkdAm4+Km4y44WgHTegDaAhHQKruslBQemx1fZQoaAZHQJulmKFZgXxoB03oA2gIR0Cq8VWx6fJ4dX2UKGgGR0CbCz0tRNypaAdN6ANoCEdAqvaGPFNtZXV9lChoBkdAl2eEwztTk2gHTegDaAhHQKr4mRRMvh91fZQoaAZHQJZHaj3225RoB03oA2gIR0Cq+2qWLP2PdX2UKGgGR0CYKl5j6N2laAdN6ANoCEdAqv8bDCP6sXV9lChoBkdAmYyWT5ftyGgHTegDaAhHQKsGJskY4yZ1fZQoaAZHQJdHVbOeJ55oB03oA2gIR0CrCC76guh9dX2UKGgGR0CaWirHEMspaAdN6ANoCEdAqwqiDM/yG3V9lChoBkdAlpmFJDmbLGgHTegDaAhHQKsNMutfXwt1fZQoaAZHQJfYRB9kSVZoB03oA2gIR0CrElmdAgPmdX2UKGgGR0CaB5A1NxlyaAdN6ANoCEdAqxRz5XU6P3V9lChoBkdAmiXJyZKFqWgHTegDaAhHQKsW7tQbdad1fZQoaAZHQJgibWAf+0hoB03oA2gIR0CrGd8L0BfbdX2UKGgGR0CWb2cR15jZaAdN6ANoCEdAqyF5CtzS1HV9lChoBkdAnB5KIi1RcmgHTegDaAhHQKskCd+5OJt1fZQoaAZHQJnQaed07r9oB03oA2gIR0CrJnILG7z1dX2UKGgGR0CSPG+hXbM5aAdN6ANoCEdAqyjzZDiOvXV9lChoBkdAnPcXSKFZgWgHTegDaAhHQKst8QYDT0B1fZQoaAZHQJzae36Q/5doB03oA2gIR0CrL//zreImdX2UKGgGR0CdGxE6kqMFaAdN6ANoCEdAqzKCrgflqHV9lChoBkdAnvyPXoTwlWgHTegDaAhHQKs1Aa6z3RJ1fZQoaAZHQJ4VBPUKArhoB03oA2gIR0CrO3S3b212dX2UKGgGR0CfV4iXpnpTaAdN6ANoCEdAqz6bFyaNM3V9lChoBkdAnpkvy08eS2gHTegDaAhHQKtB7haTwDx1fZQoaAZHQJ6662gFotdoB03oA2gIR0CrRHfFaSs9dX2UKGgGR0CainGr0aqCaAdN6ANoCEdAq0mKBqbjLnV9lChoBkdAm1WNpudf9mgHTegDaAhHQKtLlOgQHzJ1fZQoaAZHQJ245da+vhZoB03oA2gIR0CrTgakqMFVdX2UKGgGR0CbeBq1PWQPaAdN6ANoCEdAq1CU+cH4XXV9lChoBkdAm5qYjnmq52gHTegDaAhHQKtV3dpItlJ1fZQoaAZHQJ6mo0sOG0xoB03oA2gIR0CrWNJdrwfAdX2UKGgGR0CaHSn7HhjwaAdN6ANoCEdAq1yRn+Q2dnV9lChoBkdAmjZmhAWznmgHTegDaAhHQKtgSBOHnEF1fZQoaAZHQJyXHZ26kIpoB03oA2gIR0CrZW3rt3OfdX2UKGgGR0CW6ltdiUgTaAdN6ANoCEdAq2eN52QnyHV9lChoBkdAmjaoZVGTcWgHTegDaAhHQKtqBgeA/cF1fZQoaAZHQJokIptrKvFoB03oA2gIR0CrbJo1UEPldX2UKGgGR0CXz+kgOjIraAdN6ANoCEdAq3HL0rbxmXV9lChoBkdAlserWd3B6GgHTegDaAhHQKt0DxH5Jsh1fZQoaAZHQJZlbZTQ3P1oB03oA2gIR0Crd3jzyz5XdX2UKGgGR0CbRYiPyTY/aAdN6ANoCEdAq3tfXyy2QXV9lChoBkdAmE3XMpw0f2gHTegDaAhHQKuBYuOCGvh1fZQoaAZHQJxAR/kNnXdoB03oA2gIR0Crg2Md1dPddX2UKGgGR0CZobhPTG5uaAdN6ANoCEdAq4XBSHdoFnV9lChoBkdAmtIfIn0CimgHTegDaAhHQKuITrM1TBJ1fZQoaAZHQJqdvq4YrJ9oB03oA2gIR0CrjVyamXPadX2UKGgGR0CaLJfZ26kJaAdN6ANoCEdAq49v8XN1Q3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1ec74b688da28e3328b1ced1c5e7b9afeada120c789446b7ae96cdb9e05bf36
|
3 |
+
size 1265746
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1949.7896580041736, "std_reward": 89.42981096260762, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T11:44:32.113776"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e072d63a7fd28fe000f38dad70e7bbcd9f2708281f429db46fef968476c5931d
|
3 |
size 2136
|