File size: 1,326 Bytes
f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f f7bb68d 021e23f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
library_name: transformers
language: ja
license: apache-2.0
datasets: reazon-research/reazonspeech
pipeline_tag: feature-extraction
tags:
- wav2vec2
- speech
---
# `reazon-research/japanese-wav2vec2-base`
This is a Japanese wav2vec 2.0 Base model pre-trained on [ReazonSpeech v2.0 corpus](https://huggingface.co/datasets/reazon-research/reazonspeech).
We also release the CTC model [`reazon-research/japanese-wav2vec2-base-rs35kh`](https://huggingface.co/reazon-research/japanese-wav2vec2-base-rs35kh) derived from this model.
## Usage
```python
import librosa
import torch
from transformers import AutoFeatureExtractor, AutoModel
feature_extractor = AutoFeatureExtractor.from_pretrained("reazon-research/japanese-wav2vec2-base")
model = AutoModel.from_pretrained("reazon-research/japanese-wav2vec2-base")
audio, sr = librosa.load(audio_file, sr=16_000)
inputs = feature_extractor(
audio,
return_tensors="pt",
sampling_rate=sr,
)
with torch.inference_mode():
outputs = model(**inputs)
```
## Citation
```bibtex
@misc{reazon-research-japanese-wav2vec2-base,
title={japanese-wav2vec2-base},
author={Sasaki, Yuta},
url = {https://huggingface.co/reazon-research/japanese-wav2vec2-base},
year = {2024}
}
```
## License
[Apaceh Licence 2.0](https://choosealicense.com/licenses/apache-2.0/) |