File size: 5,904 Bytes
0b0687d a98aecf 0b0687d 184a2f1 a98aecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
license: mit
model-index:
- name: gembode-2b-ultraalpaca
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 34.71
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-2b-ultraalpaca
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 25.87
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-2b-ultraalpaca
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 31.71
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-2b-ultraalpaca
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 71.31
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-2b-ultraalpaca
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 34.08
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-2b-ultraalpaca
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 60.09
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-2b-ultraalpaca
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 47.01
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-2b-ultraalpaca
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 57.04
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-2b-ultraalpaca
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 49.37
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-2b-ultraalpaca
name: Open Portuguese LLM Leaderboard
---
# gembode-2b-ultraalpaca
<!--- PROJECT LOGO -->
<p align="center">
<img src="https://huggingface.co/recogna-nlp/GemBode-2b-it/resolve/main/gembode.jpg" alt="Phi-Bode Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>
GemmBode é um modelo de linguagem ajustado para o idioma português, desenvolvido a partir do modelo base de instruções Gemma-2b-it fornecido pela [Google](https://huggingface.co/google/gemma-2b-it). Este modelo foi refinado através do processo de fine-tuning utilizando o dataset UltraAlpaca. O principal objetivo deste modelo é ser viável para pessoas
que não possuem recursos computacionais disponíveis para o uso de LLMs (Large Language Models). Ressalta-se que este é um trabalho em andamento e o modelo ainda apresenta problemas na geração de texto em português.
## Características Principais
- **Modelo Base:** Gemma-2b-it, criado pela Google, com 2 bilhões de parâmetros.
- **Dataset para Fine-tuning:** UltraAlpaca
- **Treinamento:** O treinamento foi realizado a partir do fine-tuning completo do gemma-2b-it.
# [Open Portuguese LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/recogna-nlp/gembode-2b-ultraalpaca)
| Metric | Value |
|--------------------------|---------|
|Average |**45.69**|
|ENEM Challenge (No Images)| 34.71|
|BLUEX (No Images) | 25.87|
|OAB Exams | 31.71|
|Assin2 RTE | 71.31|
|Assin2 STS | 34.08|
|FaQuAD NLI | 60.09|
|HateBR Binary | 47.01|
|PT Hate Speech Binary | 57.04|
|tweetSentBR | 49.37|
|