SYSTEM = 'xtuner.utils.SYSTEM_TEMPLATE.alpaca' accumulative_counts = 16 alpaca_en = dict( dataset=dict( data_files='/petrobr/parceirosbr/radiar/llama_test/ultracabrita3.json', path='json', type='datasets.load_dataset'), dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn', max_length=2048, pack_to_max_length=True, remove_unused_columns=True, shuffle_before_pack=True, template_map_fn=dict( template='xtuner.utils.PROMPT_TEMPLATE.gemma', type='xtuner.dataset.map_fns.template_map_fn_factory'), tokenizer=dict( padding_side='right', pretrained_model_name_or_path= '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6', trust_remote_code=True, type='transformers.AutoTokenizer.from_pretrained'), type='xtuner.dataset.process_hf_dataset', use_varlen_attn=False) alpaca_en_path = '/petrobr/parceirosbr/radiar/llama_test/ultracabrita3.json' batch_size = 1 betas = ( 0.9, 0.999, ) custom_hooks = [ dict( tokenizer=dict( padding_side='right', pretrained_model_name_or_path= '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6', trust_remote_code=True, type='transformers.AutoTokenizer.from_pretrained'), type='xtuner.engine.hooks.DatasetInfoHook'), dict( evaluation_inputs=[ 'O que é um bode?', 'Qual a capital da França?', 'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?', 'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?', 'Resolva a equação de segundo grau x² - x - 30 = 0', 'Escreva um código em python para calcular x^y usando divisão e conquista.', ], every_n_iters=500, prompt_template='xtuner.utils.PROMPT_TEMPLATE.gemma', system='xtuner.utils.SYSTEM_TEMPLATE.alpaca', tokenizer=dict( padding_side='right', pretrained_model_name_or_path= '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6', trust_remote_code=True, type='transformers.AutoTokenizer.from_pretrained'), type='xtuner.engine.hooks.EvaluateChatHook'), ] dataloader_num_workers = 0 default_hooks = dict( checkpoint=dict( by_epoch=False, interval=500, max_keep_ckpts=2, type='mmengine.hooks.CheckpointHook'), logger=dict( interval=10, log_metric_by_epoch=False, type='mmengine.hooks.LoggerHook'), param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'), sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'), timer=dict(type='mmengine.hooks.IterTimerHook')) env_cfg = dict( cudnn_benchmark=False, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) evaluation_freq = 500 evaluation_inputs = [ 'O que é um bode?', 'Qual a capital da França?', 'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?', 'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?', 'Resolva a equação de segundo grau x² - x - 30 = 0', 'Escreva um código em python para calcular x^y usando divisão e conquista.', ] launcher = 'pytorch' load_from = None log_level = 'INFO' log_processor = dict(by_epoch=False) lr = 2e-05 max_epochs = 1 max_length = 2048 max_norm = 1 model = dict( llm=dict( pretrained_model_name_or_path= '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6', trust_remote_code=True, type='transformers.AutoModelForCausalLM.from_pretrained'), type='xtuner.model.SupervisedFinetune', use_varlen_attn=False) optim_type = 'torch.optim.AdamW' optim_wrapper = dict( optimizer=dict( betas=( 0.9, 0.999, ), lr=2e-05, type='torch.optim.AdamW', weight_decay=0), type='DeepSpeedOptimWrapper') pack_to_max_length = True param_scheduler = [ dict( begin=0, by_epoch=True, convert_to_iter_based=True, end=0.03, start_factor=1e-05, type='mmengine.optim.LinearLR'), dict( begin=0.03, by_epoch=True, convert_to_iter_based=True, end=1, eta_min=0.0, type='mmengine.optim.CosineAnnealingLR'), ] pretrained_model_name_or_path = '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6' prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.gemma' randomness = dict(deterministic=False, seed=None) resume = False runner_type = 'FlexibleRunner' save_steps = 500 save_total_limit = 2 strategy = dict( config=dict( bf16=dict(enabled=False), fp16=dict(enabled=True, initial_scale_power=16), gradient_accumulation_steps='auto', gradient_clipping='auto', train_micro_batch_size_per_gpu='auto', zero_allow_untested_optimizer=True, zero_force_ds_cpu_optimizer=False, zero_optimization=dict(overlap_comm=True, stage=2)), exclude_frozen_parameters=True, gradient_accumulation_steps=16, gradient_clipping=1, sequence_parallel_size=1, train_micro_batch_size_per_gpu=1, type='xtuner.engine.DeepSpeedStrategy') tokenizer = dict( padding_side='right', pretrained_model_name_or_path= '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6', trust_remote_code=True, type='transformers.AutoTokenizer.from_pretrained') train_cfg = dict(max_epochs=1, type='xtuner.engine.runner.TrainLoop') train_dataloader = dict( batch_size=1, collate_fn=dict( type='xtuner.dataset.collate_fns.default_collate_fn', use_varlen_attn=False), dataset=dict( dataset=dict( data_files= '/petrobr/parceirosbr/radiar/llama_test/ultracabrita3.json', path='json', type='datasets.load_dataset'), dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn', max_length=2048, pack_to_max_length=True, remove_unused_columns=True, shuffle_before_pack=True, template_map_fn=dict( template='xtuner.utils.PROMPT_TEMPLATE.gemma', type='xtuner.dataset.map_fns.template_map_fn_factory'), tokenizer=dict( padding_side='right', pretrained_model_name_or_path= '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6', trust_remote_code=True, type='transformers.AutoTokenizer.from_pretrained'), type='xtuner.dataset.process_hf_dataset', use_varlen_attn=False), num_workers=0, sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler')) use_varlen_attn = False visualizer = None warmup_ratio = 0.03 weight_decay = 0 work_dir = './work_dirs/gemma_2b_it_full_ultracabrita'