File size: 9,026 Bytes
4af66f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
SYSTEM = 'Você é assistente de IA chamado GemBode.\n - O GemBode é um modelo de língua conversacional projetado para ser prestativo, honesto e inofensivo.\n - O GemBode pode entender e se comunicar fluentemente na linguagem escolhida pelo usuário, em especial o Português e o Inglês'
accumulative_counts = 16
alpaca_en = dict(
dataset=dict(
data_files=
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json',
path='json',
type='datasets.load_dataset'),
dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn',
max_length=2048,
pack_to_max_length=True,
remove_unused_columns=True,
shuffle_before_pack=True,
template_map_fn=dict(
template='xtuner.utils.PROMPT_TEMPLATE.default',
type='xtuner.dataset.map_fns.template_map_fn_factory'),
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path=
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.dataset.process_hf_dataset',
use_varlen_attn=False)
alpaca_en_path = '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json'
batch_size = 2
betas = (
0.9,
0.999,
)
custom_hooks = [
dict(
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path=
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.engine.hooks.DatasetInfoHook'),
dict(
evaluation_inputs=[
'O que é um bode?',
'Qual a capital da França?',
'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?',
'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?',
'Resolva a equação de segundo grau x² - x - 30 = 0',
'Escreva um código em python para calcular x^y usando divisão e conquista.',
],
every_n_iters=500,
prompt_template='xtuner.utils.PROMPT_TEMPLATE.default',
system=
'Você é assistente de IA chamado GemBode.\n - O GemBode é um modelo de língua conversacional projetado para ser prestativo, honesto e inofensivo.\n - O GemBode pode entender e se comunicar fluentemente na linguagem escolhida pelo usuário, em especial o Português e o Inglês',
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path=
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.engine.hooks.EvaluateChatHook'),
]
dataloader_num_workers = 0
default_hooks = dict(
checkpoint=dict(
by_epoch=False,
interval=500,
max_keep_ckpts=2,
type='mmengine.hooks.CheckpointHook'),
logger=dict(
interval=10,
log_metric_by_epoch=False,
type='mmengine.hooks.LoggerHook'),
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
timer=dict(type='mmengine.hooks.IterTimerHook'))
env_cfg = dict(
cudnn_benchmark=False,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
evaluation_freq = 500
evaluation_inputs = [
'O que é um bode?',
'Qual a capital da França?',
'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?',
'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?',
'Resolva a equação de segundo grau x² - x - 30 = 0',
'Escreva um código em python para calcular x^y usando divisão e conquista.',
]
launcher = 'pytorch'
load_from = None
log_level = 'INFO'
log_processor = dict(by_epoch=False)
lr = 0.0002
max_epochs = 1
max_length = 2048
max_norm = 1
model = dict(
llm=dict(
pretrained_model_name_or_path=
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf',
quantization_config=dict(
bnb_4bit_compute_dtype='torch.float16',
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
llm_int8_has_fp16_weight=False,
llm_int8_threshold=6.0,
load_in_4bit=True,
load_in_8bit=False,
type='transformers.BitsAndBytesConfig'),
torch_dtype='torch.float16',
trust_remote_code=True,
type='transformers.AutoModelForCausalLM.from_pretrained'),
lora=dict(
bias='none',
lora_alpha=16,
lora_dropout=0.1,
r=64,
task_type='CAUSAL_LM',
type='peft.LoraConfig'),
type='xtuner.model.SupervisedFinetune',
use_varlen_attn=False)
optim_type = 'torch.optim.AdamW'
optim_wrapper = dict(
optimizer=dict(
betas=(
0.9,
0.999,
),
lr=0.0002,
type='torch.optim.AdamW',
weight_decay=0),
type='DeepSpeedOptimWrapper')
pack_to_max_length = True
param_scheduler = [
dict(
begin=0,
by_epoch=True,
convert_to_iter_based=True,
end=0.03,
start_factor=1e-05,
type='mmengine.optim.LinearLR'),
dict(
begin=0.03,
by_epoch=True,
convert_to_iter_based=True,
end=1,
eta_min=0.0,
type='mmengine.optim.CosineAnnealingLR'),
]
pretrained_model_name_or_path = '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf'
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.default'
randomness = dict(deterministic=False, seed=None)
resume = False
runner_type = 'FlexibleRunner'
save_steps = 500
save_total_limit = 2
strategy = dict(
config=dict(
bf16=dict(enabled=False),
fp16=dict(enabled=True, initial_scale_power=16),
gradient_accumulation_steps='auto',
gradient_clipping='auto',
train_micro_batch_size_per_gpu='auto',
zero_allow_untested_optimizer=True,
zero_force_ds_cpu_optimizer=False,
zero_optimization=dict(overlap_comm=True, stage=2)),
exclude_frozen_parameters=True,
gradient_accumulation_steps=16,
gradient_clipping=1,
sequence_parallel_size=1,
train_micro_batch_size_per_gpu=2,
type='xtuner.engine.DeepSpeedStrategy')
tokenizer = dict(
padding_side='right',
pretrained_model_name_or_path=
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained')
train_cfg = dict(max_epochs=1, type='xtuner.engine.runner.TrainLoop')
train_dataloader = dict(
batch_size=2,
collate_fn=dict(
type='xtuner.dataset.collate_fns.default_collate_fn',
use_varlen_attn=False),
dataset=dict(
dataset=dict(
data_files=
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json',
path='json',
type='datasets.load_dataset'),
dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn',
max_length=2048,
pack_to_max_length=True,
remove_unused_columns=True,
shuffle_before_pack=True,
template_map_fn=dict(
template='xtuner.utils.PROMPT_TEMPLATE.default',
type='xtuner.dataset.map_fns.template_map_fn_factory'),
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path=
'/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--google--gemma-7b/snapshots/c0be85690a0385f5990b14826ff530f199a5cdcf',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.dataset.process_hf_dataset',
use_varlen_attn=False),
num_workers=0,
sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler'))
use_varlen_attn = False
visualizer = None
warmup_ratio = 0.03
weight_decay = 0
work_dir = './work_dirs/gemma_7b_qlora_ultraalpaca'
|