phpaiola commited on
Commit
2d37edb
·
verified ·
1 Parent(s): 6694dc2

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +22 -1
  2. adapter_config.json +26 -0
  3. adapter_model.bin +3 -0
  4. xtuner_config.py +209 -0
README.md CHANGED
@@ -1,3 +1,24 @@
1
  ---
2
- license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
  ---
4
+ ## Training procedure
5
+
6
+
7
+ The following `bitsandbytes` quantization config was used during training:
8
+ - quant_method: bitsandbytes
9
+ - _load_in_8bit: False
10
+ - _load_in_4bit: True
11
+ - llm_int8_threshold: 6.0
12
+ - llm_int8_skip_modules: None
13
+ - llm_int8_enable_fp32_cpu_offload: False
14
+ - llm_int8_has_fp16_weight: False
15
+ - bnb_4bit_quant_type: nf4
16
+ - bnb_4bit_use_double_quant: True
17
+ - bnb_4bit_compute_dtype: float16
18
+ - bnb_4bit_quant_storage: uint8
19
+ - load_in_4bit: True
20
+ - load_in_8bit: False
21
+ ### Framework versions
22
+
23
+
24
+ - PEFT 0.5.0
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/41b61a33a2483885c981aa79e0df6b32407ed873",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 16,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 64,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "up_proj",
18
+ "v_proj",
19
+ "down_proj",
20
+ "o_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "gate_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27c45250b32f7f9015d78e2eacea8334b2a5b2a40cdd47cb2662d4b05035297e
3
+ size 335706314
xtuner_config.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SYSTEM = 'Você é assistente de IA chamado MistralBode.\n - O MistralBode é um modelo de língua conversacional projetado para ser prestativo, honesto e inofensivo.\n - O InternBode pode entender e se comunicar fluentemente na linguagem escolhida pelo usuário, em especial o Português e o Inglês'
2
+ accumulative_counts = 16
3
+ alpaca_en_path = '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json'
4
+ batch_size = 2
5
+ betas = (
6
+ 0.9,
7
+ 0.999,
8
+ )
9
+ custom_hooks = [
10
+ dict(
11
+ tokenizer=dict(
12
+ padding_side='right',
13
+ pretrained_model_name_or_path=
14
+ '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/41b61a33a2483885c981aa79e0df6b32407ed873',
15
+ trust_remote_code=True,
16
+ type='transformers.LlamaTokenizer.from_pretrained'),
17
+ type='xtuner.engine.hooks.DatasetInfoHook'),
18
+ dict(
19
+ evaluation_inputs=[
20
+ 'O que é um bode?',
21
+ 'Qual a capital da França?',
22
+ 'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?',
23
+ 'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?',
24
+ ],
25
+ every_n_iters=500,
26
+ prompt_template='xtuner.utils.PROMPT_TEMPLATE.mistral',
27
+ system=
28
+ 'Você é assistente de IA chamado MistralBode.\n - O MistralBode é um modelo de língua conversacional projetado para ser prestativo, honesto e inofensivo.\n - O InternBode pode entender e se comunicar fluentemente na linguagem escolhida pelo usuário, em especial o Português e o Inglês',
29
+ tokenizer=dict(
30
+ padding_side='right',
31
+ pretrained_model_name_or_path=
32
+ '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/41b61a33a2483885c981aa79e0df6b32407ed873',
33
+ trust_remote_code=True,
34
+ type='transformers.LlamaTokenizer.from_pretrained'),
35
+ type='xtuner.engine.hooks.EvaluateChatHook'),
36
+ ]
37
+ data_path = '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json'
38
+ dataloader_num_workers = 0
39
+ default_hooks = dict(
40
+ checkpoint=dict(
41
+ by_epoch=False,
42
+ interval=500,
43
+ max_keep_ckpts=2,
44
+ type='mmengine.hooks.CheckpointHook'),
45
+ logger=dict(
46
+ interval=10,
47
+ log_metric_by_epoch=False,
48
+ type='mmengine.hooks.LoggerHook'),
49
+ param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
50
+ sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
51
+ timer=dict(type='mmengine.hooks.IterTimerHook'))
52
+ env_cfg = dict(
53
+ cudnn_benchmark=False,
54
+ dist_cfg=dict(backend='nccl'),
55
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
56
+ evaluation_freq = 500
57
+ evaluation_inputs = [
58
+ 'O que é um bode?',
59
+ 'Qual a capital da França?',
60
+ 'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?',
61
+ 'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?',
62
+ ]
63
+ launcher = 'pytorch'
64
+ load_from = None
65
+ log_level = 'INFO'
66
+ log_processor = dict(by_epoch=False)
67
+ lr = 0.0002
68
+ max_epochs = 1
69
+ max_length = 2048
70
+ max_norm = 1
71
+ model = dict(
72
+ llm=dict(
73
+ pretrained_model_name_or_path=
74
+ '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/41b61a33a2483885c981aa79e0df6b32407ed873',
75
+ quantization_config=dict(
76
+ bnb_4bit_compute_dtype='torch.float16',
77
+ bnb_4bit_quant_type='nf4',
78
+ bnb_4bit_use_double_quant=True,
79
+ llm_int8_has_fp16_weight=False,
80
+ llm_int8_threshold=6.0,
81
+ load_in_4bit=True,
82
+ load_in_8bit=False,
83
+ type='transformers.BitsAndBytesConfig'),
84
+ torch_dtype='torch.float16',
85
+ trust_remote_code=True,
86
+ type='transformers.MistralForCausalLM.from_pretrained'),
87
+ lora=dict(
88
+ bias='none',
89
+ lora_alpha=16,
90
+ lora_dropout=0.05,
91
+ r=64,
92
+ task_type='CAUSAL_LM',
93
+ type='peft.LoraConfig'),
94
+ type='xtuner.model.SupervisedFinetune',
95
+ use_varlen_attn=False)
96
+ optim_type = 'torch.optim.AdamW'
97
+ optim_wrapper = dict(
98
+ optimizer=dict(
99
+ betas=(
100
+ 0.9,
101
+ 0.999,
102
+ ),
103
+ lr=0.0002,
104
+ type='torch.optim.AdamW',
105
+ weight_decay=0),
106
+ type='DeepSpeedOptimWrapper')
107
+ pack_to_max_length = True
108
+ param_scheduler = [
109
+ dict(
110
+ begin=0,
111
+ by_epoch=True,
112
+ convert_to_iter_based=True,
113
+ end=0.03,
114
+ start_factor=1e-05,
115
+ type='mmengine.optim.LinearLR'),
116
+ dict(
117
+ begin=0.03,
118
+ by_epoch=True,
119
+ convert_to_iter_based=True,
120
+ end=1,
121
+ eta_min=0.0,
122
+ type='mmengine.optim.CosineAnnealingLR'),
123
+ ]
124
+ pretrained_model_name_or_path = '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/41b61a33a2483885c981aa79e0df6b32407ed873'
125
+ prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.mistral'
126
+ randomness = dict(deterministic=False, seed=None)
127
+ resume = False
128
+ runner_type = 'FlexibleRunner'
129
+ save_steps = 500
130
+ save_total_limit = 2
131
+ strategy = dict(
132
+ config=dict(
133
+ bf16=dict(enabled=False),
134
+ fp16=dict(enabled=True, initial_scale_power=16),
135
+ gradient_accumulation_steps='auto',
136
+ gradient_clipping='auto',
137
+ train_micro_batch_size_per_gpu='auto',
138
+ zero_allow_untested_optimizer=True,
139
+ zero_force_ds_cpu_optimizer=False,
140
+ zero_optimization=dict(overlap_comm=True, stage=2)),
141
+ exclude_frozen_parameters=True,
142
+ gradient_accumulation_steps=16,
143
+ gradient_clipping=1,
144
+ sequence_parallel_size=1,
145
+ train_micro_batch_size_per_gpu=2,
146
+ type='xtuner.engine.DeepSpeedStrategy')
147
+ tokenizer = dict(
148
+ padding_side='right',
149
+ pretrained_model_name_or_path=
150
+ '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/41b61a33a2483885c981aa79e0df6b32407ed873',
151
+ trust_remote_code=True,
152
+ type='transformers.LlamaTokenizer.from_pretrained')
153
+ train_cfg = dict(max_epochs=1, type='xtuner.engine.runner.TrainLoop')
154
+ train_dataloader = dict(
155
+ batch_size=2,
156
+ collate_fn=dict(
157
+ type='xtuner.dataset.collate_fns.default_collate_fn',
158
+ use_varlen_attn=False),
159
+ dataset=dict(
160
+ dataset=dict(
161
+ data_files=
162
+ '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json',
163
+ path='json',
164
+ type='datasets.load_dataset'),
165
+ dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn',
166
+ max_length=2048,
167
+ pack_to_max_length=True,
168
+ remove_unused_columns=True,
169
+ shuffle_before_pack=True,
170
+ template_map_fn=dict(
171
+ template='xtuner.utils.PROMPT_TEMPLATE.mistral',
172
+ type='xtuner.dataset.map_fns.template_map_fn_factory'),
173
+ tokenizer=dict(
174
+ padding_side='right',
175
+ pretrained_model_name_or_path=
176
+ '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/41b61a33a2483885c981aa79e0df6b32407ed873',
177
+ trust_remote_code=True,
178
+ type='transformers.LlamaTokenizer.from_pretrained'),
179
+ type='xtuner.dataset.process_hf_dataset',
180
+ use_varlen_attn=False),
181
+ num_workers=0,
182
+ sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler'))
183
+ train_dataset = dict(
184
+ dataset=dict(
185
+ data_files=
186
+ '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/datasets--recogna-nlp--ultra-alpaca-ptbr/snapshots/e69900d074177d370a911096fc30bdf407eff666/train.json',
187
+ path='json',
188
+ type='datasets.load_dataset'),
189
+ dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn',
190
+ max_length=2048,
191
+ pack_to_max_length=True,
192
+ remove_unused_columns=True,
193
+ shuffle_before_pack=True,
194
+ template_map_fn=dict(
195
+ template='xtuner.utils.PROMPT_TEMPLATE.mistral',
196
+ type='xtuner.dataset.map_fns.template_map_fn_factory'),
197
+ tokenizer=dict(
198
+ padding_side='right',
199
+ pretrained_model_name_or_path=
200
+ '/petrobr/parceirosbr/home/rafael.rodrigues/.cache/huggingface/hub/models--mistralai--Mistral-7B-Instruct-v0.2/snapshots/41b61a33a2483885c981aa79e0df6b32407ed873',
201
+ trust_remote_code=True,
202
+ type='transformers.LlamaTokenizer.from_pretrained'),
203
+ type='xtuner.dataset.process_hf_dataset',
204
+ use_varlen_attn=False)
205
+ use_varlen_attn = False
206
+ visualizer = None
207
+ warmup_ratio = 0.03
208
+ weight_decay = 0
209
+ work_dir = './work_dirs/mistral_7b_qlora_ultraalpaca'