File size: 1,247 Bytes
d8253be 5351f1c d8253be 5351f1c d8253be 5351f1c d8253be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
license: apache-2.0
---
# phibode-3-mini-4k-ultraalpaca
phibode-3-mini-4k-ultraalpaca is an SFT fine-tuned version of microsoft/Phi-3-mini-4k-instruct using a custom training dataset.
This model was made with [Phinetune]()
## Process
- Learning Rate: 1.41e-05
- Maximum Sequence Length: 2048
- Dataset: recogna-nlp/ultra-alpaca-ptbr
- Split: train
## 💻 Usage
```python
!pip install -qU transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
model = "recogna-nlp/phibode-3-mini-4k-ultraalpaca"
tokenizer = AutoTokenizer.from_pretrained(model)
# Example prompt
messages = [
{"role": "system", "content": "Você é assistente de IA chamado PhiBode. O PhiBode é um modelo de língua conversacional projetado para ser prestativo, honesto e inofensivo."},
{"role": "user", "content": "<Insira seu prompt aqui>"},
]
# Generate a response
model = AutoModelForCausalLM.from_pretrained(model, trust_remote_code=True)
pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
outputs = pipeline(messages, **generation_args)
print(outputs[0]["generated_text"])
``` |