File size: 1,247 Bytes
d8253be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5351f1c
 
 
 
d8253be
 
5351f1c
d8253be
5351f1c
 
 
 
 
 
 
d8253be
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
license: apache-2.0
---

# phibode-3-mini-4k-ultraalpaca

phibode-3-mini-4k-ultraalpaca is an SFT fine-tuned version of microsoft/Phi-3-mini-4k-instruct using a custom training dataset.
This model was made with [Phinetune]()

## Process
- Learning Rate: 1.41e-05
- Maximum Sequence Length: 2048
- Dataset: recogna-nlp/ultra-alpaca-ptbr
- Split: train

## 💻 Usage
```python
!pip install -qU transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

model = "recogna-nlp/phibode-3-mini-4k-ultraalpaca"
tokenizer = AutoTokenizer.from_pretrained(model)

# Example prompt
messages = [
    {"role": "system", "content": "Você é assistente de IA chamado PhiBode. O PhiBode é um modelo de língua conversacional projetado para ser prestativo, honesto e inofensivo."},
    {"role": "user", "content": "<Insira seu prompt aqui>"},
]

# Generate a response
model = AutoModelForCausalLM.from_pretrained(model, trust_remote_code=True)
pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
generation_args = {
    "max_new_tokens": 500,
    "return_full_text": False,
    "temperature": 0.0,
    "do_sample": False,
}
outputs = pipeline(messages, **generation_args)
print(outputs[0]["generated_text"])
```