import collections.abc import math from collections import OrderedDict from itertools import repeat from typing import Callable, Optional, Sequence, Tuple import torch import torch.nn as nn from torch.nn import functional as F from torch.utils.checkpoint import checkpoint from transformers import AutoModel, PreTrainedModel from .configuration_japanese_clip import JapaneseCLIPConfig class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm (with cast back to input dtype).""" def forward(self, x: torch.Tensor) -> torch.Tensor: orig_dtype = x.dtype x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) return x.to(dtype=orig_dtype) class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(torch.ones(dim) * init_values) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class PatchDropout(nn.Module): """ https://arxiv.org/abs/2212.00794 """ def __init__(self, prob, exclude_first_token=True): super().__init__() assert 0 <= prob < 1.0 self.prob = prob self.exclude_first_token = exclude_first_token # exclude CLS token def forward(self, x): if not self.training or self.prob == 0.: return x if self.exclude_first_token: cls_tokens, x = x[:, :1], x[:, 1:] else: cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) batch = x.size()[0] num_tokens = x.size()[1] batch_indices = torch.arange(batch) batch_indices = batch_indices[..., None] keep_prob = 1 - self.prob num_patches_keep = max(1, int(num_tokens * keep_prob)) rand = torch.randn(batch, num_tokens) patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices x = x[batch_indices, patch_indices_keep] if self.exclude_first_token: x = torch.cat((cls_tokens, x), dim=1) return x class AttentionalPooler(nn.Module): def __init__( self, d_model: int, context_dim: int, n_head: int = 8, n_queries: int = 256, norm_layer: Callable = LayerNorm ): super().__init__() self.query = nn.Parameter(torch.randn(n_queries, d_model)) self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim) self.ln_q = norm_layer(d_model) self.ln_k = norm_layer(context_dim) def forward(self, x: torch.Tensor): x = self.ln_k(x).permute(1, 0, 2) # NLD -> LND N = x.shape[1] q = self.ln_q(self.query) out = self.attn(q.unsqueeze(1).expand(-1, N, -1), x, x, need_weights=False)[0] return out.permute(1, 0, 2) # LND -> NLD class ResidualAttentionBlock(nn.Module): def __init__( self, d_model: int, n_head: int, mlp_ratio: float = 4.0, ls_init_value: Optional[float] = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, is_cross_attention: bool = False, ): super().__init__() self.ln_1 = norm_layer(d_model) self.attn = nn.MultiheadAttention(d_model, n_head) self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() if is_cross_attention: self.ln_1_kv = norm_layer(d_model) self.ln_2 = norm_layer(d_model) mlp_width = int(d_model * mlp_ratio) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, mlp_width)), ("gelu", act_layer()), ("c_proj", nn.Linear(mlp_width, d_model)) ])) self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() def attention( self, q_x: torch.Tensor, k_x: Optional[torch.Tensor] = None, v_x: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, ): k_x = k_x if k_x is not None else q_x v_x = v_x if v_x is not None else q_x attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None return self.attn( q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask )[0] def forward( self, q_x: torch.Tensor, k_x: Optional[torch.Tensor] = None, v_x: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, ): k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)) x = x + self.ls_2(self.mlp(self.ln_2(x))) return x # From PyTorch internals def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse to_2tuple = _ntuple(2) def _expand_token(token, batch_size: int): return token.view(1, 1, -1).expand(batch_size, -1, -1) class Transformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, ): super().__init__() self.width = width self.layers = layers self.grad_checkpointing = False self.resblocks = nn.ModuleList([ ResidualAttentionBlock( width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer) for _ in range(layers) ]) def get_cast_dtype(self) -> torch.dtype: if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'): return self.resblocks[0].mlp.c_fc.int8_original_dtype return self.resblocks[0].mlp.c_fc.weight.dtype def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): for r in self.resblocks: if self.grad_checkpointing and not torch.jit.is_scripting(): # TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372 x = checkpoint(r, x, None, None, attn_mask) else: x = r(x, attn_mask=attn_mask) return x class JapaneseCLIPVisionTransformer(nn.Module): output_tokens: torch.jit.Final[bool] def __init__( self, image_size: int, patch_size: int, width: int, layers: int, heads: int, mlp_ratio: float, ls_init_value: float = None, attentional_pool: bool = False, attn_pooler_queries: int = 256, attn_pooler_heads: int = 8, output_dim: int = 512, patch_dropout: float = 0., no_ln_pre: bool = False, pool_type: str = 'tok', final_ln_after_pool: bool = False, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, output_tokens: bool = False, **kwargs, ): super().__init__() assert pool_type in ('tok', 'avg', 'none') self.output_tokens = output_tokens image_height, image_width = self.image_size = to_2tuple(image_size) patch_height, patch_width = self.patch_size = to_2tuple(patch_size) self.grid_size = (image_height // patch_height, image_width // patch_width) self.final_ln_after_pool = final_ln_after_pool # currently ignored w/ attn pool enabled self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) # class embeddings and positional embeddings scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter( scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width) self.transformer = Transformer( width, layers, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, ) if attentional_pool: if isinstance(attentional_pool, str): self.attn_pool_type = attentional_pool self.pool_type = 'none' if attentional_pool in ('parallel', 'cascade'): self.attn_pool = AttentionalPooler( output_dim, width, n_head=attn_pooler_heads, n_queries=attn_pooler_queries, ) self.attn_pool_contrastive = AttentionalPooler( output_dim, width, n_head=attn_pooler_heads, n_queries=1, ) else: assert False else: self.attn_pool_type = '' self.pool_type = pool_type self.attn_pool = AttentionalPooler( output_dim, width, n_head=attn_pooler_heads, n_queries=attn_pooler_queries, ) self.attn_pool_contrastive = None pool_dim = output_dim else: self.attn_pool = None pool_dim = width self.pool_type = pool_type self.ln_post = norm_layer(pool_dim) self.proj = nn.Parameter(scale * torch.randn(pool_dim, output_dim)) self.init_parameters() def lock(self, unlocked_groups=0, freeze_bn_stats=False): for param in self.parameters(): param.requires_grad = False if unlocked_groups != 0: groups = [ [ self.conv1, self.class_embedding, self.positional_embedding, self.ln_pre, ], *self.transformer.resblocks[:-1], [ self.transformer.resblocks[-1], self.ln_post, ], self.proj, ] def _unlock(x): if isinstance(x, Sequence): for g in x: _unlock(g) else: if isinstance(x, torch.nn.Parameter): x.requires_grad = True else: for p in x.parameters(): p.requires_grad = True _unlock(groups[-unlocked_groups:]) def init_parameters(self): # FIXME OpenAI CLIP did not define an init for the VisualTransformer # TODO experiment if default PyTorch init, below, or alternate init is best. # nn.init.normal_(self.class_embedding, std=self.scale) # nn.init.normal_(self.positional_embedding, std=self.scale) # # proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) # attn_std = self.transformer.width ** -0.5 # fc_std = (2 * self.transformer.width) ** -0.5 # for block in self.transformer.resblocks: # nn.init.normal_(block.attn.in_proj_weight, std=attn_std) # nn.init.normal_(block.attn.out_proj.weight, std=proj_std) # nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) # nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) # # if self.text_projection is not None: # nn.init.normal_(self.text_projection, std=self.scale) pass @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.transformer.grad_checkpointing = enable def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: if self.pool_type == 'avg': pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:] elif self.pool_type == 'tok': pooled, tokens = x[:, 0], x[:, 1:] else: pooled = tokens = x return pooled, tokens def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] # class embeddings and positional embeddings x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.patch_dropout(x) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD if self.attn_pool is not None: if self.attn_pool_contrastive is not None: # This is untested, WIP pooling that should match paper x = self.ln_post(x) # TBD LN first or separate one after each pool? tokens = self.attn_pool(x) if self.attn_pool_type == 'parallel': pooled = self.attn_pool_contrastive(x) else: assert self.attn_pool_type == 'cascade' pooled = self.attn_pool_contrastive(tokens) else: # this is the original OpenCLIP CoCa setup, does not match paper x = self.attn_pool(x) x = self.ln_post(x) pooled, tokens = self._global_pool(x) elif self.final_ln_after_pool: pooled, tokens = self._global_pool(x) pooled = self.ln_post(pooled) else: x = self.ln_post(x) pooled, tokens = self._global_pool(x) if self.proj is not None: pooled = pooled @ self.proj if self.output_tokens: return pooled, tokens return pooled class JapaneseCLIPModel(PreTrainedModel): config_class = JapaneseCLIPConfig def __init__(self, config: JapaneseCLIPConfig): super().__init__(config) text_config = config.text_config vision_config = config.vision_config self.image_encoder = JapaneseCLIPVisionTransformer( **vision_config.to_dict() ) self.text_encoder = AutoModel.from_config(text_config, add_pooling_layer=False) hidden_size = text_config.hidden_size self.projection_dim = self.image_encoder.output_dim self.text_projection = nn.Linear(hidden_size, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07)) self.max_length = config.max_length self.position_ids = list(range(0, self.max_length)) def _create_position_id_tensor(self, batch_size: int) -> torch.LongTensor: # rinna/japanese-roberta-base requires providing custom position ids # see: https://huggingface.co/rinna/japanese-roberta-base#note-3-provide-position_ids-as-an-argument-explicitly return torch.LongTensor([self.position_ids for _ in range(batch_size)]) def get_image_features(self, pixel_values: torch.FloatTensor) -> torch.FloatTensor: return self.image_encoder(pixel_values) # (batch_size, hidden_dim) def get_text_features( self, input_ids: torch.Tensor, position_ids: torch.Tensor = None ) -> torch.FloatTensor: if position_ids is None: position_ids = self._create_position_id_tensor(input_ids.size(0)).to( input_ids.device ) last_hidden_state = self.text_encoder( input_ids=input_ids, position_ids=position_ids, output_hidden_states=True, return_dict=True, ).hidden_states[ -1 ] # (batch_size, tokens, embed_dim) pooled_output = last_hidden_state[:, 0, :] # (batch_size, embed_dim) return self.text_projection(pooled_output) # (batch_size, hidden_dim) def forward( self, pixel_values: torch.FloatTensor, input_ids: torch.Tensor, position_ids: torch.Tensor = None, ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: """ DDPを使うときはこのメソッドを経由しなければならない 他のメソッドで得られた勾配はGPU間で同期されない """ image_features = self.get_image_features(pixel_values) text_features = self.get_text_features(input_ids, position_ids) return image_features, text_features, self.logit_scale