Delete .ipynb_checkpoints
Browse files
.ipynb_checkpoints/added_tokens-checkpoint.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"<s>": 0
|
3 |
-
}
|
|
|
|
|
|
|
|
.ipynb_checkpoints/config-checkpoint.json
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"Rwkv6MoeForCausalLM"
|
4 |
-
],
|
5 |
-
"auto_map": {
|
6 |
-
"AutoConfig": "configuration_rwkv6_moe.Rwkv6MoeConfig",
|
7 |
-
"AutoModelForCausalLM": "modeling_rwkv6_moe.Rwkv6MoeForCausalLM"
|
8 |
-
},
|
9 |
-
"attention_hidden_size": 4096,
|
10 |
-
"bos_token_id": 0,
|
11 |
-
"eos_token_id": 0,
|
12 |
-
"head_size": 64,
|
13 |
-
"head_size_divisor": 8,
|
14 |
-
"hidden_size": 4096,
|
15 |
-
"intermediate_size": null,
|
16 |
-
"layer_norm_epsilon": 1e-05,
|
17 |
-
"model_type": "rwkv6_moe",
|
18 |
-
"num_attention_heads": 64,
|
19 |
-
"num_experts": 8,
|
20 |
-
"num_hidden_layers": 32,
|
21 |
-
"rescale_every": 6,
|
22 |
-
"tie_word_embeddings": false,
|
23 |
-
"transformers_version": "4.34.0",
|
24 |
-
"use_cache": true,
|
25 |
-
"vocab_size": 65536
|
26 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/configuration_rwkv6_moe-checkpoint.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
-
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
""" RWKV configuration"""
|
17 |
-
|
18 |
-
from transformers.configuration_utils import PretrainedConfig
|
19 |
-
from transformers.utils import logging
|
20 |
-
|
21 |
-
|
22 |
-
logger = logging.get_logger(__name__)
|
23 |
-
|
24 |
-
RWKV6_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
-
|
26 |
-
|
27 |
-
class Rwkv6MoeConfig(PretrainedConfig):
|
28 |
-
"""
|
29 |
-
This is the configuration class to store the configuration of a [`Rwkv6MoeModel`]. It is used to instantiate a RWKV6Moe
|
30 |
-
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
31 |
-
defaults will yield a similar configuration to that of the RWVK-4
|
32 |
-
[RWKV/rwkv-5-world-1b5](https://huggingface.co/RWKV/rwkv-5-world-1b5) architecture.
|
33 |
-
|
34 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
-
documentation from [`PretrainedConfig`] for more information.
|
36 |
-
|
37 |
-
|
38 |
-
Args:
|
39 |
-
vocab_size (`int`, *optional*, defaults to 65536):
|
40 |
-
Vocabulary size of the RWKV6Moe model. Defines the number of different tokens that can be represented by the
|
41 |
-
`inputs_ids` passed when calling [`Rwkv6MoeModel`].
|
42 |
-
hidden_size (`int`, *optional*, defaults to 768):
|
43 |
-
Dimensionality of the embeddings and hidden states.
|
44 |
-
num_hidden_layers (`int`, *optional*, defaults to 24):
|
45 |
-
Number of hidden layers in the model.
|
46 |
-
attention_hidden_size (`int`, *optional*):
|
47 |
-
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
|
48 |
-
num_attention_heads (`int`, *optional*, defaults to 64):
|
49 |
-
The attention heads to use in rwkv6 self_attention module.
|
50 |
-
head_size (`int`, *optional*, defaults to 64): head_size of rwkv6 self_attention module.
|
51 |
-
intermediate_size (`int`, *optional*):
|
52 |
-
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
|
53 |
-
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
54 |
-
The epsilon to use in the layer normalization layers.
|
55 |
-
shared_expert (`bool`, *optional*, defaults to True):
|
56 |
-
Whether or not there is a shared expert
|
57 |
-
num_experts (`int`, *optional*, defaults to 8):
|
58 |
-
The number of feed forward network experts.
|
59 |
-
bos_token_id (`int`, *optional*, defaults to 0):
|
60 |
-
The id of the beginning of sentence token in the vocabulary. Defaults to 0.
|
61 |
-
eos_token_id (`int`, *optional*, defaults to 0):
|
62 |
-
The id of the end of sentence token in the vocabulary. Defaults to 0.
|
63 |
-
rescale_every (`int`, *optional*, defaults to 6):
|
64 |
-
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
|
65 |
-
`rescale_every` layer. If set to 0 or a negative number, no rescale is done.
|
66 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
67 |
-
Whether or not to tie the word embeddings with the input token embeddings.
|
68 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
69 |
-
Whether or not the model should return the last state.
|
70 |
-
|
71 |
-
|
72 |
-
Example:
|
73 |
-
|
74 |
-
```python
|
75 |
-
>>> from transformers import Rwkv6MoeConfig, Rwkv6MoeModel
|
76 |
-
|
77 |
-
>>> # Initializing a Rwkv6Moe configuration
|
78 |
-
>>> configuration = Rwkv6MoeConfig()
|
79 |
-
|
80 |
-
>>> # Initializing a model (with random weights) from the configuration
|
81 |
-
>>> model = Rwkv6MoeModel(configuration)
|
82 |
-
|
83 |
-
>>> # Accessing the model configuration
|
84 |
-
>>> configuration = model.config
|
85 |
-
```"""
|
86 |
-
|
87 |
-
model_type = "rwkv6_moe"
|
88 |
-
|
89 |
-
def __init__(
|
90 |
-
self,
|
91 |
-
vocab_size=65536,
|
92 |
-
hidden_size=768,
|
93 |
-
num_hidden_layers=24,
|
94 |
-
attention_hidden_size=None,
|
95 |
-
head_size=64,
|
96 |
-
head_size_divisor=8,
|
97 |
-
intermediate_size=None,
|
98 |
-
layer_norm_epsilon=1e-5,
|
99 |
-
shared_expert=True,
|
100 |
-
num_experts=8,
|
101 |
-
bos_token_id=0,
|
102 |
-
eos_token_id=0,
|
103 |
-
rescale_every=6,
|
104 |
-
tie_word_embeddings=False,
|
105 |
-
use_cache=True,
|
106 |
-
**kwargs,
|
107 |
-
):
|
108 |
-
self.vocab_size = vocab_size
|
109 |
-
self.hidden_size = hidden_size
|
110 |
-
self.num_hidden_layers = num_hidden_layers
|
111 |
-
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
|
112 |
-
self.head_size = head_size
|
113 |
-
self.head_size_divisor = head_size_divisor
|
114 |
-
self.intermediate_size = None
|
115 |
-
self.layer_norm_epsilon = layer_norm_epsilon
|
116 |
-
self.shared_expert = shared_expert
|
117 |
-
self.num_experts = num_experts
|
118 |
-
self.rescale_every = rescale_every
|
119 |
-
self.use_cache = use_cache
|
120 |
-
|
121 |
-
self.bos_token_id = bos_token_id
|
122 |
-
self.eos_token_id = eos_token_id
|
123 |
-
|
124 |
-
super().__init__(
|
125 |
-
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
|
126 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/generation_config-checkpoint.json
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"chat_format": "chatml",
|
3 |
-
"eos_token_id": 0,
|
4 |
-
"pad_token_id": 0,
|
5 |
-
"max_window_size": 4096,
|
6 |
-
"max_new_tokens": 4096,
|
7 |
-
"do_sample": true,
|
8 |
-
"top_k": 0,
|
9 |
-
"top_p": 0.1,
|
10 |
-
"repetition_penalty": 1.0,
|
11 |
-
"transformers_version": "4.31.1"
|
12 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/modeling_rwkv6_moe-checkpoint.py
DELETED
@@ -1,801 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 The RWKV team and HuggingFace Inc. team.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""PyTorch RWKV6Moe World model."""
|
16 |
-
|
17 |
-
from dataclasses import dataclass
|
18 |
-
from typing import List, Optional, Tuple, Union
|
19 |
-
|
20 |
-
from pathlib import Path
|
21 |
-
|
22 |
-
import torch
|
23 |
-
import torch.nn.functional as F
|
24 |
-
import torch.utils.checkpoint
|
25 |
-
from torch import nn
|
26 |
-
from torch.nn import CrossEntropyLoss
|
27 |
-
|
28 |
-
from transformers.modeling_utils import PreTrainedModel
|
29 |
-
from transformers.utils import (
|
30 |
-
ModelOutput,
|
31 |
-
add_code_sample_docstrings,
|
32 |
-
add_start_docstrings,
|
33 |
-
add_start_docstrings_to_model_forward,
|
34 |
-
is_ninja_available,
|
35 |
-
is_torch_cuda_available,
|
36 |
-
logging,
|
37 |
-
)
|
38 |
-
|
39 |
-
from .configuration_rwkv6_moe import Rwkv6MoeConfig
|
40 |
-
try:
|
41 |
-
from fla.ops.rwkv6 import fused_recurrent_rwkv6
|
42 |
-
except ImportError:
|
43 |
-
print("Required module is not installed. Please install it using the following commands:")
|
44 |
-
print("pip install -U git+https://github.com/sustcsonglin/flash-linear-attention")
|
45 |
-
print("Additionally, ensure you have the correct version of Triton installed:")
|
46 |
-
print("pip install triton==2.2.0")
|
47 |
-
|
48 |
-
|
49 |
-
logger = logging.get_logger(__name__)
|
50 |
-
|
51 |
-
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-6-moe-11a41b"
|
52 |
-
_CONFIG_FOR_DOC = "Rwkv6MoeConfig"
|
53 |
-
|
54 |
-
def rwkv6_moe_linear_attention_cpu(receptance, key, value, time_decay, time_first, state):
|
55 |
-
# For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed
|
56 |
-
# within a torch.no_grad.
|
57 |
-
batch, seq_length, _ = receptance.shape
|
58 |
-
num_heads, head_size = time_first.shape
|
59 |
-
key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2).transpose(-2, -1)
|
60 |
-
value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
|
61 |
-
receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
|
62 |
-
time_decay = torch.exp(-torch.exp(time_decay.float())).view(batch, seq_length, num_heads, head_size).permute(0, 2, 3, 1)
|
63 |
-
time_first = time_first.float().reshape(-1, 1, 1).reshape(num_heads, -1, 1)
|
64 |
-
out = torch.zeros_like(key).reshape(batch, seq_length, num_heads, head_size)
|
65 |
-
|
66 |
-
for current_index in range(seq_length):
|
67 |
-
current_receptance = receptance[:, :, current_index:current_index+1, :]
|
68 |
-
current_key = key[:, :, :, current_index:current_index+1]
|
69 |
-
current_value = value[:, :, current_index:current_index+1, :]
|
70 |
-
current_time_decay = time_decay[:, :, :, current_index:current_index+1]
|
71 |
-
attention_output = current_key @ current_value
|
72 |
-
out[:, current_index] = (current_receptance @ (time_first * attention_output + state)).squeeze(2)
|
73 |
-
with torch.no_grad():
|
74 |
-
state = attention_output + current_time_decay * state
|
75 |
-
|
76 |
-
return out, state
|
77 |
-
|
78 |
-
def rwkv6_moe_linear_attention(
|
79 |
-
training,
|
80 |
-
receptance,
|
81 |
-
key,
|
82 |
-
value,
|
83 |
-
time_decay,
|
84 |
-
time_first,
|
85 |
-
state,
|
86 |
-
):
|
87 |
-
no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, receptance, key, value])
|
88 |
-
# Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version
|
89 |
-
# in this case).
|
90 |
-
one_token = key.size(1) == 1
|
91 |
-
if not training or no_cuda or one_token:
|
92 |
-
return rwkv6_moe_linear_attention_cpu(
|
93 |
-
receptance, key, value, time_decay, time_first, state
|
94 |
-
)
|
95 |
-
else:
|
96 |
-
batch, seq_length, _ = receptance.shape
|
97 |
-
num_heads, head_size = time_first.shape
|
98 |
-
key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, T, H, K -> B, H, T, K
|
99 |
-
value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, T, H, K - > B, H, T, V
|
100 |
-
receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, H, T, K
|
101 |
-
time_decay = -torch.exp(time_decay.float()).view(batch, seq_length, num_heads, head_size).permute(0, 2, 1, 3) # B, T, H, K -> B, H, T, K
|
102 |
-
time_first = time_first.float().reshape(num_heads, head_size) # H, K
|
103 |
-
out, state = fused_recurrent_rwkv6(receptance, key, value, time_decay, time_first, scale=1.0, initial_state=state, output_final_state=True)
|
104 |
-
return out.transpose(1, 2), state
|
105 |
-
|
106 |
-
|
107 |
-
class Rwkv6MoeSelfAttention(nn.Module):
|
108 |
-
def __init__(self, config, layer_id=0):
|
109 |
-
super().__init__()
|
110 |
-
self.config = config
|
111 |
-
self.layer_id = layer_id
|
112 |
-
hidden_size = config.hidden_size
|
113 |
-
attention_hidden_size = config.attention_hidden_size
|
114 |
-
self.attention_hidden_size = attention_hidden_size
|
115 |
-
head_size = config.head_size
|
116 |
-
num_heads = attention_hidden_size // head_size
|
117 |
-
|
118 |
-
self.time_maa_x = nn.Parameter(torch.empty(1, 1, hidden_size))
|
119 |
-
self.time_maa_w = nn.Parameter(torch.empty(1, 1, hidden_size))
|
120 |
-
self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size))
|
121 |
-
self.time_maa_v = nn.Parameter(torch.empty(1, 1, hidden_size))
|
122 |
-
self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size))
|
123 |
-
self.time_maa_g = nn.Parameter(torch.empty(1, 1, hidden_size))
|
124 |
-
|
125 |
-
TIME_MIX_EXTRA_DIM = 32 # generate TIME_MIX for w,k,v,r,g
|
126 |
-
if hidden_size == 4096: #7b
|
127 |
-
TIME_MIX_EXTRA_DIM = 64
|
128 |
-
self.time_maa_w1 = nn.Parameter(torch.empty(hidden_size, TIME_MIX_EXTRA_DIM*5))
|
129 |
-
self.time_maa_w2 = nn.Parameter(torch.empty(5, TIME_MIX_EXTRA_DIM, hidden_size))
|
130 |
-
|
131 |
-
self.time_decay = nn.Parameter(torch.empty(1, 1, attention_hidden_size))
|
132 |
-
|
133 |
-
TIME_DECAY_EXTRA_DIM = 64
|
134 |
-
if hidden_size == 4096: #7b
|
135 |
-
TIME_DECAY_EXTRA_DIM = 128
|
136 |
-
self.time_decay_w1 = nn.Parameter(torch.empty(hidden_size, TIME_DECAY_EXTRA_DIM))
|
137 |
-
self.time_decay_w2 = nn.Parameter(torch.empty(TIME_DECAY_EXTRA_DIM, attention_hidden_size))
|
138 |
-
|
139 |
-
self.time_faaaa = nn.Parameter(torch.empty(num_heads, config.head_size))
|
140 |
-
|
141 |
-
|
142 |
-
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
143 |
-
self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
144 |
-
self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
145 |
-
self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
146 |
-
self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
147 |
-
self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False)
|
148 |
-
self.ln_x = nn.GroupNorm(num_heads, hidden_size, eps=(1e-5)*(config.head_size_divisor**2))
|
149 |
-
|
150 |
-
def extract_key_value(self, hidden, state=None):
|
151 |
-
# Mix hidden with the previous timestep to produce key, value, receptance
|
152 |
-
if hidden.size(1) == 1 and state is not None:
|
153 |
-
shifted = state[0][:, :, self.layer_id]
|
154 |
-
else:
|
155 |
-
shifted = self.time_shift(hidden)
|
156 |
-
if state is not None:
|
157 |
-
shifted[:, 0] = state[0][:, :, self.layer_id]
|
158 |
-
if len(shifted.size()) == 2:
|
159 |
-
shifted = shifted.unsqueeze(1)
|
160 |
-
|
161 |
-
x = hidden
|
162 |
-
|
163 |
-
B, T, C = hidden.shape
|
164 |
-
|
165 |
-
xx = shifted - x
|
166 |
-
|
167 |
-
xxx = x + xx * self.time_maa_x
|
168 |
-
xxx = torch.tanh(xxx @ self.time_maa_w1).view(B*T, 5, -1).transpose(0, 1)
|
169 |
-
xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
|
170 |
-
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
171 |
-
|
172 |
-
time_decay = x + xx * (self.time_maa_w + mw)
|
173 |
-
key = x + xx * (self.time_maa_k + mk)
|
174 |
-
value = x + xx * (self.time_maa_v + mv)
|
175 |
-
receptance = x + xx * (self.time_maa_r + mr)
|
176 |
-
gate = x + xx * (self.time_maa_g + mg)
|
177 |
-
|
178 |
-
receptance = self.receptance(receptance)
|
179 |
-
key = self.key(key)
|
180 |
-
value = self.value(value)
|
181 |
-
gate = F.silu(self.gate(gate))
|
182 |
-
|
183 |
-
time_decay = torch.tanh(time_decay @ self.time_decay_w1) @ self.time_decay_w2
|
184 |
-
time_decay = self.time_decay + time_decay
|
185 |
-
|
186 |
-
if state is not None:
|
187 |
-
state[0][:, :, self.layer_id] = hidden[:, -1]
|
188 |
-
|
189 |
-
return receptance, key, value, gate, time_decay, state
|
190 |
-
|
191 |
-
def forward(self, hidden, state=None, use_cache=False, seq_mode=True):
|
192 |
-
receptance, key, value, gate, time_decay, state = self.extract_key_value(hidden, state=state)
|
193 |
-
|
194 |
-
B,T,C = receptance.shape
|
195 |
-
H, S = self.time_faaaa.shape
|
196 |
-
|
197 |
-
layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
|
198 |
-
out, layer_state = rwkv6_moe_linear_attention(
|
199 |
-
self.training, receptance, key, value, time_decay, self.time_faaaa, layer_state,
|
200 |
-
)
|
201 |
-
|
202 |
-
if layer_state is not None:
|
203 |
-
state[1][:, :, :, :, self.layer_id] = layer_state
|
204 |
-
|
205 |
-
out = out.reshape(B * T, H * S)
|
206 |
-
out = F.group_norm(out, num_groups=H, weight=self.ln_x.weight.to(out.dtype), bias=self.ln_x.bias.to(out.dtype), eps=self.ln_x.eps).reshape(B, T, H * S)
|
207 |
-
out = out.to(dtype=hidden.dtype) * gate
|
208 |
-
out = self.output(out)
|
209 |
-
return out, state
|
210 |
-
|
211 |
-
class Rwkv6MoeFeedForwardExpert(nn.Module):
|
212 |
-
def __init__(self, config, layer_id=0):
|
213 |
-
super().__init__()
|
214 |
-
hidden_size = config.hidden_size
|
215 |
-
# https://github.com/BlinkDL/RWKV-LM/blob/3db37a72356b736966ddd377268f02b80963af3f/RWKV-v4neo/train.py#L168
|
216 |
-
intermediate_size = (
|
217 |
-
config.intermediate_size
|
218 |
-
if config.intermediate_size is not None
|
219 |
-
else int((config.hidden_size * 3.5) // 32 * 32)
|
220 |
-
)
|
221 |
-
|
222 |
-
self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
|
223 |
-
self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
|
224 |
-
|
225 |
-
def forward(self, hidden, state=None):
|
226 |
-
return self.value( torch.relu( self.key(hidden) ).square() )
|
227 |
-
|
228 |
-
class Rwkv6MoeFeedForward(nn.Module):
|
229 |
-
def __init__(self, config, layer_id=0):
|
230 |
-
super().__init__()
|
231 |
-
self.config = config
|
232 |
-
self.layer_id = layer_id
|
233 |
-
hidden_size = config.hidden_size
|
234 |
-
|
235 |
-
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
236 |
-
self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size))
|
237 |
-
self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size))
|
238 |
-
|
239 |
-
self.receptance = nn.Linear(hidden_size, hidden_size, bias=False)
|
240 |
-
self.shared_expert = Rwkv6MoeFeedForwardExpert(config, layer_id) if config.shared_expert else None
|
241 |
-
self.experts = nn.ModuleList([Rwkv6MoeFeedForwardExpert(config, layer_id) for _ in range(config.num_experts)])
|
242 |
-
|
243 |
-
primes = [5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443]
|
244 |
-
self.hash_prime = primes[layer_id]
|
245 |
-
|
246 |
-
def forward(self, hidden, input_ids:torch.LongTensor, state=None):
|
247 |
-
if hidden.size(1) == 1 and state is not None:
|
248 |
-
shifted = state[2][:, :, self.layer_id]
|
249 |
-
else:
|
250 |
-
shifted = self.time_shift(hidden)
|
251 |
-
if state is not None:
|
252 |
-
shifted[:, 0] = state[2][:, :, self.layer_id]
|
253 |
-
if len(shifted.size()) == 2:
|
254 |
-
shifted = shifted.unsqueeze(1)
|
255 |
-
|
256 |
-
delta_hidden_to_shifted = shifted - hidden
|
257 |
-
hidden_with_tokenshift = hidden + delta_hidden_to_shifted * self.time_maa_k
|
258 |
-
receptance = hidden + delta_hidden_to_shifted * self.time_maa_r
|
259 |
-
|
260 |
-
receptance = torch.sigmoid(self.receptance(receptance))
|
261 |
-
|
262 |
-
# flatten batch and sequence dimensions of input_ids and hidden_with_tokenshift
|
263 |
-
flat_input_ids = input_ids.flatten()
|
264 |
-
flat_hidden_with_tokenshift = hidden_with_tokenshift.reshape(-1, hidden_with_tokenshift.size(-1))
|
265 |
-
|
266 |
-
if self.shared_expert is not None:
|
267 |
-
flat_value = self.shared_expert(flat_hidden_with_tokenshift)
|
268 |
-
else:
|
269 |
-
flat_value = torch.zeros_like(flat_hidden_with_tokenshift)
|
270 |
-
|
271 |
-
# add in contributions from experts
|
272 |
-
|
273 |
-
# find the expert index for each flat index (flattened batchseq index)
|
274 |
-
expert_by_flat_idx = (flat_input_ids * self.hash_prime) % self.config.num_experts
|
275 |
-
# one hot mask of expert choices by flat batchseq index
|
276 |
-
expert_mask = torch.nn.functional.one_hot(expert_by_flat_idx, num_classes=self.config.num_experts).mT # expert_idx, flat_idx
|
277 |
-
# go through each expert and add in their contributions
|
278 |
-
for expert_idx in range(self.config.num_experts):
|
279 |
-
expert = self.experts[expert_idx]
|
280 |
-
# get a list of flat batchseq indices for the current expert
|
281 |
-
flat_indices_for_expert = expert_mask[expert_idx].nonzero().flatten()
|
282 |
-
if flat_indices_for_expert.size(-1) > 0:
|
283 |
-
# select out the inputs from this expert's flat batchseq locations into a compact tensor
|
284 |
-
expert_hidden_with_tokenshift = flat_hidden_with_tokenshift[flat_indices_for_expert]
|
285 |
-
# run the compact tensor through the expert
|
286 |
-
compact_expert_output = expert(expert_hidden_with_tokenshift)
|
287 |
-
# add the expert's results to the appropriate original locations
|
288 |
-
flat_value.index_add_(dim=0, index=flat_indices_for_expert, source=compact_expert_output)
|
289 |
-
|
290 |
-
value = flat_value.view(hidden.size(0), hidden.size(1), hidden.size(2))
|
291 |
-
|
292 |
-
if state is not None:
|
293 |
-
state[2][:, :, self.layer_id] = hidden[:, -1]
|
294 |
-
|
295 |
-
return receptance * value, state
|
296 |
-
|
297 |
-
|
298 |
-
class Rwkv6MoeBlock(nn.Module):
|
299 |
-
def __init__(self, config, layer_id):
|
300 |
-
super().__init__()
|
301 |
-
self.config = config
|
302 |
-
self.layer_id = layer_id
|
303 |
-
|
304 |
-
if layer_id == 0:
|
305 |
-
self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
306 |
-
|
307 |
-
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
308 |
-
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
309 |
-
|
310 |
-
self.attention = Rwkv6MoeSelfAttention(config, layer_id)
|
311 |
-
self.feed_forward = Rwkv6MoeFeedForward(config, layer_id)
|
312 |
-
|
313 |
-
def forward(self, hidden, input_ids:torch.LongTensor, state=None, use_cache=False, output_attentions=False, seq_mode=True):
|
314 |
-
if self.layer_id == 0:
|
315 |
-
hidden = self.pre_ln(hidden)
|
316 |
-
attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache, seq_mode=seq_mode)
|
317 |
-
hidden = hidden + attention
|
318 |
-
|
319 |
-
feed_forward, state = self.feed_forward(self.ln2(hidden), input_ids=input_ids, state=state)
|
320 |
-
hidden = hidden + feed_forward
|
321 |
-
|
322 |
-
outputs = (hidden, state)
|
323 |
-
if output_attentions:
|
324 |
-
outputs += (attention,)
|
325 |
-
else:
|
326 |
-
outputs += (None,)
|
327 |
-
|
328 |
-
return outputs
|
329 |
-
|
330 |
-
|
331 |
-
class Rwkv6MoePreTrainedModel(PreTrainedModel):
|
332 |
-
"""
|
333 |
-
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
334 |
-
models.
|
335 |
-
"""
|
336 |
-
|
337 |
-
config_class = Rwkv6MoeConfig
|
338 |
-
base_model_prefix = "rwkv6moe"
|
339 |
-
_no_split_modules = ["Rwkv6MoeBlock"]
|
340 |
-
_keep_in_fp32_modules = ["time_decay", "time_first"]
|
341 |
-
supports_gradient_checkpointing = True
|
342 |
-
|
343 |
-
def _init_weights(self, module):
|
344 |
-
"""Initialize the weights."""
|
345 |
-
if isinstance(module, Rwkv6MoeSelfAttention):
|
346 |
-
layer_id = module.layer_id
|
347 |
-
num_hidden_layers = module.config.num_hidden_layers
|
348 |
-
hidden_size = module.config.hidden_size
|
349 |
-
attention_hidden_size = module.attention_hidden_size
|
350 |
-
head_size = module.config.head_size
|
351 |
-
num_heads = attention_hidden_size // head_size
|
352 |
-
|
353 |
-
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
|
354 |
-
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
355 |
-
|
356 |
-
time_weight = torch.tensor(
|
357 |
-
[i / hidden_size for i in range(hidden_size)],
|
358 |
-
dtype=module.time_maa_k.dtype,
|
359 |
-
device=module.time_maa_k.device,
|
360 |
-
)
|
361 |
-
time_weight = time_weight[None, None, :]
|
362 |
-
|
363 |
-
decay_speed = [
|
364 |
-
-6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
|
365 |
-
for h in range(attention_hidden_size)
|
366 |
-
]
|
367 |
-
decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device)
|
368 |
-
tmp = torch.tensor(
|
369 |
-
[
|
370 |
-
(1.0 - (i / (attention_hidden_size - 1.0))) * ratio_0_to_1 + 0.1 * ((i + 1) % 3 - 1)
|
371 |
-
for i in range(attention_hidden_size)
|
372 |
-
],
|
373 |
-
dtype=module.time_faaaa.dtype,
|
374 |
-
device=module.time_faaaa.device,
|
375 |
-
)
|
376 |
-
|
377 |
-
with torch.no_grad():
|
378 |
-
module.time_maa_x.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
|
379 |
-
module.time_maa_w.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
|
380 |
-
module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
|
381 |
-
module.time_maa_v.data = 1.0 - (torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
|
382 |
-
module.time_maa_r.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
|
383 |
-
module.time_maa_g.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
|
384 |
-
|
385 |
-
TIME_MIX_EXTRA_DIM = 32 # generate TIME_MIX for w,k,v,r,g
|
386 |
-
module.time_maa_w1.data = torch.zeros(hidden_size, TIME_MIX_EXTRA_DIM*5, dtype=module.time_maa_w1.dtype, device=module.time_maa_w1.device).uniform_(-1e-4, 1e-4)
|
387 |
-
module.time_maa_w2.data = torch.zeros(5, TIME_MIX_EXTRA_DIM, hidden_size, dtype=module.time_maa_w2.dtype, device=module.time_maa_w2.device).uniform_(-1e-4, 1e-4)
|
388 |
-
|
389 |
-
TIME_DECAY_EXTRA_DIM = 64
|
390 |
-
module.time_decay_w1.data = torch.zeros(hidden_size, TIME_DECAY_EXTRA_DIM, dtype=module.time_decay_w1.dtype, device=module.time_decay_w1.device).uniform_(-1e-4, 1e-4)
|
391 |
-
module.time_decay_w2.data = torch.zeros(TIME_DECAY_EXTRA_DIM, attention_hidden_size, dtype=module.time_decay_w2.dtype, device=module.time_decay_w2.device).uniform_(-1e-4, 1e-4)
|
392 |
-
|
393 |
-
module.time_decay.data = decay_speed.reshape(num_heads, head_size)
|
394 |
-
module.time_faaaa.data = tmp.reshape(num_heads, head_size)
|
395 |
-
|
396 |
-
elif isinstance(module, Rwkv6MoeFeedForward):
|
397 |
-
layer_id = module.layer_id
|
398 |
-
num_hidden_layers = module.config.num_hidden_layers
|
399 |
-
hidden_size = module.config.hidden_size
|
400 |
-
|
401 |
-
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
402 |
-
|
403 |
-
time_weight = torch.tensor(
|
404 |
-
[i / hidden_size for i in range(hidden_size)],
|
405 |
-
dtype=module.time_maa_k.dtype,
|
406 |
-
device=module.time_maa_k.device,
|
407 |
-
)
|
408 |
-
time_weight = time_weight[None, None, :]
|
409 |
-
|
410 |
-
with torch.no_grad():
|
411 |
-
module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
|
412 |
-
module.time_maa_r.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
|
413 |
-
|
414 |
-
|
415 |
-
@dataclass
|
416 |
-
class Rwkv6MoeOutput(ModelOutput):
|
417 |
-
"""
|
418 |
-
Class for the RWKV model outputs.
|
419 |
-
|
420 |
-
Args:
|
421 |
-
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
422 |
-
Sequence of hidden-states at the output of the last layer of the model.
|
423 |
-
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
|
424 |
-
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
425 |
-
avoid providing the old `input_ids`.
|
426 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
427 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
428 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
|
429 |
-
the model at the output of each layer plus the optional initial embedding outputs.
|
430 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
431 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
432 |
-
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
433 |
-
the self-attention heads.
|
434 |
-
"""
|
435 |
-
|
436 |
-
last_hidden_state: torch.FloatTensor = None
|
437 |
-
state: Optional[List[torch.FloatTensor]] = None
|
438 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
439 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
440 |
-
|
441 |
-
|
442 |
-
@dataclass
|
443 |
-
class Rwkv6MoeCausalLMOutput(ModelOutput):
|
444 |
-
"""
|
445 |
-
Base class for causal language model (or autoregressive) outputs.
|
446 |
-
|
447 |
-
Args:
|
448 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
449 |
-
Language modeling loss (for next-token prediction).
|
450 |
-
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
451 |
-
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
452 |
-
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
|
453 |
-
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
454 |
-
avoid providing the old `input_ids`.
|
455 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
456 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
457 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
|
458 |
-
the model at the output of each layer plus the optional initial embedding outputs.
|
459 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
460 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
461 |
-
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
462 |
-
the self-attention heads.
|
463 |
-
"""
|
464 |
-
|
465 |
-
loss: Optional[torch.FloatTensor] = None
|
466 |
-
logits: torch.FloatTensor = None
|
467 |
-
state: Optional[List[torch.FloatTensor]] = None
|
468 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
469 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
470 |
-
|
471 |
-
|
472 |
-
RWKV6MOE_START_DOCSTRING = r"""
|
473 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
474 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
475 |
-
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
|
476 |
-
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
477 |
-
general usage and behavior.
|
478 |
-
|
479 |
-
Parameters:
|
480 |
-
config ([`Rwkv6MoeConfig`]): Model configuration class with all the parameters of the model.
|
481 |
-
Initializing with a config file does not load the weights associated with the model, only the
|
482 |
-
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
483 |
-
"""
|
484 |
-
|
485 |
-
RWKV6MOE_INPUTS_DOCSTRING = r"""
|
486 |
-
Args:
|
487 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
488 |
-
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
489 |
-
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
490 |
-
sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their
|
491 |
-
past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See
|
492 |
-
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
493 |
-
IDs?](../glossary#input-ids)
|
494 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
495 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
496 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
497 |
-
model's internal embedding lookup matrix.
|
498 |
-
state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*):
|
499 |
-
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
500 |
-
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
501 |
-
use_cache (`bool`, *optional*):
|
502 |
-
If set to `True`, the last state is returned and can be used to quickly generate the next logits.
|
503 |
-
output_attentions (`bool`, *optional*):
|
504 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
505 |
-
tensors for more detail.
|
506 |
-
output_hidden_states (`bool`, *optional*):
|
507 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
508 |
-
more detail.
|
509 |
-
return_dict (`bool`, *optional*):
|
510 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
511 |
-
"""
|
512 |
-
|
513 |
-
|
514 |
-
@add_start_docstrings(
|
515 |
-
"The bare RWKV6Moe Model transformer outputting raw hidden-states without any specific head on top.",
|
516 |
-
RWKV6MOE_START_DOCSTRING,
|
517 |
-
)
|
518 |
-
class Rwkv6MoeModel(Rwkv6MoePreTrainedModel):
|
519 |
-
def __init__(self, config):
|
520 |
-
super().__init__(config)
|
521 |
-
|
522 |
-
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
523 |
-
self.blocks = nn.ModuleList([Rwkv6MoeBlock(config, layer_id=idx) for idx in range(config.num_hidden_layers)])
|
524 |
-
self.ln_out = nn.LayerNorm(config.hidden_size)
|
525 |
-
|
526 |
-
self.layers_are_rescaled = False
|
527 |
-
self.gradient_checkpointing = False
|
528 |
-
|
529 |
-
# Initialize weights and apply final processing
|
530 |
-
self.post_init()
|
531 |
-
|
532 |
-
def get_input_embeddings(self):
|
533 |
-
return self.embeddings
|
534 |
-
|
535 |
-
def set_input_embeddings(self, new_embeddings):
|
536 |
-
self.embeddings = new_embeddings
|
537 |
-
|
538 |
-
@add_start_docstrings_to_model_forward(RWKV6MOE_INPUTS_DOCSTRING)
|
539 |
-
@add_code_sample_docstrings(
|
540 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
541 |
-
output_type=Rwkv6MoeOutput,
|
542 |
-
config_class=_CONFIG_FOR_DOC,
|
543 |
-
)
|
544 |
-
def forward(
|
545 |
-
self,
|
546 |
-
input_ids: Optional[torch.LongTensor] = None,
|
547 |
-
attention_mask: Optional[torch.LongTensor] = None, # noqa
|
548 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
549 |
-
state: Optional[List[torch.FloatTensor]] = None,
|
550 |
-
use_cache: Optional[bool] = None,
|
551 |
-
output_attentions: Optional[bool] = None,
|
552 |
-
output_hidden_states: Optional[bool] = None,
|
553 |
-
return_dict: Optional[bool] = None,
|
554 |
-
) -> Union[Tuple, Rwkv6MoeOutput]:
|
555 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
556 |
-
output_hidden_states = (
|
557 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
558 |
-
)
|
559 |
-
# FIXME - training is supportable with the CUDA code
|
560 |
-
# rwkv6 only support inference in huggingface.
|
561 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
562 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
563 |
-
|
564 |
-
if self.training == self.layers_are_rescaled and (
|
565 |
-
self.embeddings.weight.dtype == torch.float16 or self.embeddings.weight.dtype == torch.bfloat16
|
566 |
-
):
|
567 |
-
self._rescale_layers()
|
568 |
-
|
569 |
-
if input_ids is None:
|
570 |
-
raise ValueError("RWKV-MoE requires that you specify input_ids, as it uses these to select experts")
|
571 |
-
if input_ids is not None and inputs_embeds is not None:
|
572 |
-
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
573 |
-
elif input_ids is None and inputs_embeds is None:
|
574 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
575 |
-
|
576 |
-
if inputs_embeds is None:
|
577 |
-
inputs_embeds = self.embeddings(input_ids)
|
578 |
-
|
579 |
-
if state is None:
|
580 |
-
state = []
|
581 |
-
head_size = self.config.head_size
|
582 |
-
num_heads = self.config.attention_hidden_size // head_size
|
583 |
-
state_attn_x = torch.zeros(
|
584 |
-
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
|
585 |
-
dtype=inputs_embeds.dtype,
|
586 |
-
requires_grad=False,
|
587 |
-
device=inputs_embeds.device,
|
588 |
-
).contiguous()
|
589 |
-
state_attn_kv = torch.zeros(
|
590 |
-
(
|
591 |
-
inputs_embeds.size(0),
|
592 |
-
num_heads,
|
593 |
-
head_size,
|
594 |
-
head_size,
|
595 |
-
self.config.num_hidden_layers,
|
596 |
-
),
|
597 |
-
dtype=torch.float32,
|
598 |
-
requires_grad=False,
|
599 |
-
device=inputs_embeds.device,
|
600 |
-
).contiguous()
|
601 |
-
state_ffn_x = torch.zeros(
|
602 |
-
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
|
603 |
-
dtype=inputs_embeds.dtype,
|
604 |
-
requires_grad=False,
|
605 |
-
device=inputs_embeds.device,
|
606 |
-
).contiguous()
|
607 |
-
state.append(state_attn_x)
|
608 |
-
state.append(state_attn_kv)
|
609 |
-
state.append(state_ffn_x)
|
610 |
-
|
611 |
-
seq_mode = inputs_embeds.shape[1] > 1
|
612 |
-
hidden_states = inputs_embeds
|
613 |
-
|
614 |
-
all_self_attentions = () if output_attentions else None
|
615 |
-
all_hidden_states = () if output_hidden_states else None
|
616 |
-
for idx, block in enumerate(self.blocks):
|
617 |
-
hidden_states, state, attentions = block(
|
618 |
-
hidden_states, input_ids=input_ids, state=state, use_cache=use_cache, output_attentions=output_attentions, seq_mode=seq_mode
|
619 |
-
)
|
620 |
-
if (
|
621 |
-
self.layers_are_rescaled
|
622 |
-
and self.config.rescale_every > 0
|
623 |
-
and (idx + 1) % self.config.rescale_every == 0
|
624 |
-
):
|
625 |
-
hidden_states = hidden_states / 2
|
626 |
-
|
627 |
-
if output_hidden_states:
|
628 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
629 |
-
|
630 |
-
if output_attentions:
|
631 |
-
all_self_attentions = all_self_attentions + (attentions,)
|
632 |
-
|
633 |
-
hidden_states = self.ln_out(hidden_states)
|
634 |
-
|
635 |
-
if output_hidden_states:
|
636 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
637 |
-
|
638 |
-
if not return_dict:
|
639 |
-
return (hidden_states, state, all_hidden_states, all_self_attentions)
|
640 |
-
|
641 |
-
return Rwkv6MoeOutput(
|
642 |
-
last_hidden_state=hidden_states,
|
643 |
-
state=state,
|
644 |
-
hidden_states=all_hidden_states, # None
|
645 |
-
attentions=all_self_attentions, # None
|
646 |
-
)
|
647 |
-
|
648 |
-
def _rescale_layers(self):
|
649 |
-
# Layers should be rescaled for inference only.
|
650 |
-
if self.layers_are_rescaled == (not self.training):
|
651 |
-
return
|
652 |
-
if self.config.rescale_every > 0:
|
653 |
-
with torch.no_grad():
|
654 |
-
for block_id, block in enumerate(self.blocks):
|
655 |
-
if self.training:
|
656 |
-
block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
657 |
-
block.feed_forward.shared_expert.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
658 |
-
for expert in block.feed_forward.experts:
|
659 |
-
expert.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
660 |
-
else:
|
661 |
-
# Deal with quantization statistics
|
662 |
-
if hasattr(block.attention.output.weight, "SCB"):
|
663 |
-
block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
|
664 |
-
block.feed_forward.shared_expert.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
|
665 |
-
for expert in block.feed_forward.experts:
|
666 |
-
expert.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
|
667 |
-
elif hasattr(block.attention.output.weight, "quant_state"):
|
668 |
-
self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id)
|
669 |
-
self._bnb_4bit_dequantize_and_rescale(block.feed_forward.shared_expert.value, block_id)
|
670 |
-
for expert in block.feed_forward.experts:
|
671 |
-
self._bnb_4bit_dequantize_and_rescale(expert.value, block_id)
|
672 |
-
else:
|
673 |
-
block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
674 |
-
block.feed_forward.shared_expert.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
675 |
-
for expert in block.feed_forward.experts:
|
676 |
-
expert.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
677 |
-
|
678 |
-
self.layers_are_rescaled = not self.training
|
679 |
-
|
680 |
-
def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id):
|
681 |
-
r"""
|
682 |
-
Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will
|
683 |
-
be quantized again.
|
684 |
-
"""
|
685 |
-
if not is_bitsandbytes_available():
|
686 |
-
raise ImportError("Please install bitsandbytes to use this method.")
|
687 |
-
import bitsandbytes as bnb
|
688 |
-
|
689 |
-
dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state)
|
690 |
-
|
691 |
-
dequant_weights.div_(2 ** int(block_id // self.config.rescale_every))
|
692 |
-
|
693 |
-
# re-quantize the model:
|
694 |
-
# we need to put it first on CPU then back to the device
|
695 |
-
# this will create an overhead :/
|
696 |
-
# We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid
|
697 |
-
# bugs with bnb
|
698 |
-
quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device)
|
699 |
-
setattr(target_layer, "weight", quant_weight)
|
700 |
-
|
701 |
-
|
702 |
-
# copied from HuggingFace https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py
|
703 |
-
@add_start_docstrings(
|
704 |
-
"""
|
705 |
-
The RWKV6Moe Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
706 |
-
embeddings).
|
707 |
-
""",
|
708 |
-
RWKV6MOE_START_DOCSTRING,
|
709 |
-
)
|
710 |
-
class Rwkv6MoeForCausalLM(Rwkv6MoePreTrainedModel):
|
711 |
-
_tied_weights_keys = ["head.weight"]
|
712 |
-
|
713 |
-
def __init__(self, config):
|
714 |
-
super().__init__(config)
|
715 |
-
self.model = Rwkv6MoeModel(config)
|
716 |
-
self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
717 |
-
|
718 |
-
# Initialize weights and apply final processing
|
719 |
-
self.post_init()
|
720 |
-
|
721 |
-
def get_output_embeddings(self):
|
722 |
-
return self.head
|
723 |
-
|
724 |
-
def set_output_embeddings(self, new_embeddings):
|
725 |
-
self.head = new_embeddings
|
726 |
-
|
727 |
-
def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs):
|
728 |
-
# only last token for inputs_ids if the state is passed along.
|
729 |
-
if state is not None:
|
730 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
731 |
-
|
732 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
733 |
-
if inputs_embeds is not None and state is None:
|
734 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
735 |
-
else:
|
736 |
-
model_inputs = {"input_ids": input_ids}
|
737 |
-
|
738 |
-
model_inputs["state"] = state
|
739 |
-
return model_inputs
|
740 |
-
|
741 |
-
@add_start_docstrings_to_model_forward(RWKV6MOE_INPUTS_DOCSTRING)
|
742 |
-
@add_code_sample_docstrings(
|
743 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
744 |
-
output_type=Rwkv6MoeCausalLMOutput,
|
745 |
-
config_class=_CONFIG_FOR_DOC,
|
746 |
-
)
|
747 |
-
def forward(
|
748 |
-
self,
|
749 |
-
input_ids: Optional[torch.LongTensor] = None,
|
750 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
751 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
752 |
-
state: Optional[List[torch.FloatTensor]] = None,
|
753 |
-
labels: Optional[torch.LongTensor] = None,
|
754 |
-
use_cache: Optional[bool] = None,
|
755 |
-
output_attentions: Optional[bool] = None,
|
756 |
-
output_hidden_states: Optional[bool] = None,
|
757 |
-
return_dict: Optional[bool] = None,
|
758 |
-
) -> Union[Tuple, Rwkv6MoeCausalLMOutput]:
|
759 |
-
r"""
|
760 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
761 |
-
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
762 |
-
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
763 |
-
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
764 |
-
"""
|
765 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
766 |
-
|
767 |
-
outputs = self.model(
|
768 |
-
input_ids,
|
769 |
-
inputs_embeds=inputs_embeds,
|
770 |
-
state=state,
|
771 |
-
use_cache=use_cache,
|
772 |
-
output_attentions=output_attentions,
|
773 |
-
output_hidden_states=output_hidden_states,
|
774 |
-
return_dict=return_dict,
|
775 |
-
)
|
776 |
-
hidden_states = outputs[0]
|
777 |
-
|
778 |
-
logits = self.head(hidden_states)
|
779 |
-
|
780 |
-
loss = None
|
781 |
-
if labels is not None:
|
782 |
-
# move labels to correct device to enable model parallelism
|
783 |
-
labels = labels.to(logits.device)
|
784 |
-
# Shift so that tokens < n predict n
|
785 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
786 |
-
shift_labels = labels[..., 1:].contiguous()
|
787 |
-
# Flatten the tokens
|
788 |
-
loss_fct = CrossEntropyLoss()
|
789 |
-
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
790 |
-
|
791 |
-
if not return_dict:
|
792 |
-
output = (logits,) + outputs[1:]
|
793 |
-
return ((loss,) + output) if loss is not None else output
|
794 |
-
|
795 |
-
return Rwkv6MoeCausalLMOutput(
|
796 |
-
loss=loss,
|
797 |
-
logits=logits,
|
798 |
-
state=outputs.state,
|
799 |
-
hidden_states=outputs.hidden_states,
|
800 |
-
attentions=outputs.attentions,
|
801 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|