--- license: apache-2.0 --- ### Huggingface RWKV Flock of Finches 37B-A11B v0.1 Mixture of Experts Model HF compatible model for Finch-MoE-37B-A11B-v0.1 > Compute sponsored by [TensorWave](https://tensorwave.com) - Access MI300X today! Try out this model on: [![Featherless](https://img.shields.io/badge/recursal%2FFinch--MoE--37B--A11B--v0.1--HF-Dummy?style=flat&label=Featherless&color=facc15)](https://featherless.ai/models/recursal/Finch-MoE-37B-A11B-v0.1-HF) ![Finch Bird](./imgs/finch.jpg) > **! Important Note !** > > The following is the HF transformers implementation of the Flock of Finches Mixture of Experts 37B-A11B v0.1 model. This is meant to be used with the huggingface transformers > > ## Quickstart with the hugging face transformer library ``` model = AutoModelForCausalLM.from_pretrained("RWKV/Finch-MoE-37B-A11B-v0.1-HF", trust_remote_code=True).to(torch.float32) tokenizer = AutoTokenizer.from_pretrained("RWKV/Finch-MoE-37B-A11B-v0.1-HF", trust_remote_code=True) ``` ## Evaluation The following demonstrates the improvements from Eagle 7B to Flock of Finches 37B-A11B v0.1 | | [Eagle 7B](https://huggingface.co/RWKV/v6-Finch-7B-HF) | [Finch 7B](https://huggingface.co/RWKV/v6-Finch-7B-HF) | [Finch 14B](https://huggingface.co/RWKV/v6-Finch-14B-HF) | [Flock of Finches 37B-A11B v0.1](https://huggingface.co/RWKV/Finch-MoE-37B-A11B-v0.1-HF) | --- | --- | --- | --- | --- | | [ARC C](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/arc) | 39.59% | 41.47% | 46.33% | 48.04% | [HellaSwag](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/hellaswag) | 53.09% | 55.96% | 57.69% | 56.76% | [MMLU](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/mmlu) | 30.86% | 41.70% | 56.05% | 55.58% | [Winogrande](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/winogrande) | 67.56% | 71.19% | 74.43% | 75.14% #### Running on CPU via HF transformers ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def generate_prompt(instruction, input=""): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') input = input.strip().replace('\r\n','\n').replace('\n\n','\n') if input: return f"""Instruction: {instruction} Input: {input} Response:""" else: return f"""User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: {instruction} Assistant:""" model = AutoModelForCausalLM.from_pretrained("RWKV/Finch-MoE-37B-A11B-v0.1-HF", trust_remote_code=True).to(torch.float32) tokenizer = AutoTokenizer.from_pretrained("RWKV/Finch-MoE-37B-A11B-v0.1-HF", trust_remote_code=True) text = "请介绍北京的旅游景点" prompt = generate_prompt(text) inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(inputs["input_ids"], max_new_tokens=333, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, ) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ``` output: ```shell User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: 请介绍北京的旅游景点 Assistant: 北京是中国的首都,拥有众多的旅游景点,以下是其中一些著名的景点: 1. 故宫:位于北京市中心,是明清两代的皇宫,内有大量的文物和艺术品。 2. 天安门广场:是中国最著名的广场之一,是中国人民政治协商会议的旧址,也是中国人民政治协商会议的中心。 3. 颐和园:是中国古代皇家园林之一,有着悠久的历史和丰富的文化内涵。 4. 长城:是中国古代的一道长城,全长约万里,是中国最著名的旅游景点之一。 5. 北京大学:是中国著名的高等教育机构之一,有着悠久的历史和丰富的文化内涵。 6. 北京动物园:是中国最大的动物园之一,有着丰富的动物资源和丰富的文化内涵。 7. 故宫博物院:是中国最著名的博物馆之一,收藏了大量的文物和艺术品,是中国最重要的文化遗产之一。 8. 天坛:是中国古代皇家 ``` #### Running on GPU via HF transformers ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def generate_prompt(instruction, input=""): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') input = input.strip().replace('\r\n','\n').replace('\n\n','\n') if input: return f"""Instruction: {instruction} Input: {input} Response:""" else: return f"""User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: {instruction} Assistant:""" model = AutoModelForCausalLM.from_pretrained("RWKV/Finch-MoE-37B-A11B-v0.1-HF", trust_remote_code=True, torch_dtype=torch.float16).to(0) tokenizer = AutoTokenizer.from_pretrained("RWKV/Finch-MoE-37B-A11B-v0.1-HF", trust_remote_code=True) text = "介绍一下大熊猫" prompt = generate_prompt(text) inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, ) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ``` output: ```shell User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: 介绍一下大熊猫 Assistant: 大熊猫是一种中国特有的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和白色的耳朵。大熊猫的食物主要是竹子,它们会在竹林中寻找竹子,并且会将竹子放在竹笼中进行储存。大熊猫的寿命约为20至30年,但由于栖息地的丧失和人类活动的 ``` #### Batch Inference ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def generate_prompt(instruction, input=""): instruction = instruction.strip().replace('\r\n', '\n').replace('\n\n', '\n') input = input.strip().replace('\r\n', '\n').replace('\n\n', '\n') if input: return f"""Instruction: {instruction} Input: {input} Response:""" else: return f"""User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: {instruction} Assistant:""" model = AutoModelForCausalLM.from_pretrained("RWKV/Finch-MoE-37B-A11B-v0.1-HF", trust_remote_code=True).to(torch.float32) tokenizer = AutoTokenizer.from_pretrained("RWKV/Finch-MoE-37B-A11B-v0.1-HF", trust_remote_code=True) texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"] prompts = [generate_prompt(text) for text in texts] inputs = tokenizer(prompts, return_tensors="pt", padding=True) outputs = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, ) for output in outputs: print(tokenizer.decode(output.tolist(), skip_special_tokens=True)) ``` output: ```shell User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: 请介绍北京的旅游景点 Assistant: 北京是中国的首都,拥有丰富的旅游资源和历史文化遗产。以下是一些北京的旅游景点: 1. 故宫:位于北京市中心,是明清两代的皇宫,是中国最大的古代宫殿建筑群之一。 2. 天安门广场:位于北京市中心,是中国最著名的城市广场之一,也是中国最大的城市广场。 3. 颐和 User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: 介绍一下大熊猫 Assistant: 大熊猫是一种生活在中国中部地区的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和圆圆的眼睛。大熊猫是一种濒危物种,目前只有在野外的几个保护区才能看到它们的身影。大熊猫的食物主要是竹子,它们会在竹子上寻找食物,并且可以通 User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: 乌兰察布 Assistant: 乌兰察布是中国新疆维吾尔自治区的一个县级市,位于新疆维吾尔自治区中部,是新疆的第二大城市。乌兰察布市是新疆的第一大城市,也是新疆的重要城市之一。乌兰察布市是新疆的经济中心,也是新疆的重要交通枢纽之一。乌兰察布市的人口约为2.5万人,其中汉族占绝大多数。乌 ``` ## Links - [Our wiki](https://wiki.rwkv.com) - [TensorWave - The AMD Cloud](https://tensorwave.com) - Access MI300X today! - [Recursal.AI Cloud Platform](https://recursal.ai) - [Featherless Inference](https://featherless.ai/models/RWKV/) ## Acknowledgement We are grateful for the help and support from the following key groups: - [TensorWave](https://tensorwave.com) - Sponsored the compute needed to train this model. It wouldn't be possible without them. - Recursal for their support in building and managing the training of this model architecture - EleutherAI for their support, especially in the v5/v6 Eagle/Finch paper - Linux Foundation AI & Data group for supporting and hosting the RWKV project