File size: 5,823 Bytes
7de425e 645dc0e 7de425e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "5edcb7d2-53dc-4170-9f2f-619c0da0ae4c",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import numpy as np\n",
"from torch.utils.data import DataLoader\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"id": "f839c8fb-b018-4ab6-86a9-7d5bf7883b45",
"metadata": {},
"source": [
"# Load OpenPhenom"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "84b9324d-fde9-4c43-bc5a-eb66cdb4f891",
"metadata": {},
"outputs": [],
"source": [
"# Load model directly\n",
"from huggingface_mae import MAEModel\n",
"open_phenom = MAEModel.from_pretrained(\"recursionpharma/OpenPhenom\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "57d918c5-78de-4b36-9f46-4652c5da93f2",
"metadata": {},
"outputs": [],
"source": [
"open_phenom.eval()\n",
"cuda_available = torch.cuda.is_available()\n",
"if cuda_available:\n",
" open_phenom.cuda()"
]
},
{
"cell_type": "markdown",
"id": "7c89d82d-5365-4492-b496-adb3bbd71b32",
"metadata": {},
"source": [
"# Load Rxrx3-core"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "deeff3a8-db67-4905-a7e9-c43aad614a84",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"rxrx3_core = load_dataset(\"recursionpharma/rxrx3-core\")['train']"
]
},
{
"cell_type": "markdown",
"id": "8f2226ce-9415-4dd8-932e-54e4e1bd8c1a",
"metadata": {},
"source": [
"# Infernce loop"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aa1218ab-f9cd-413b-9228-c1146df978be",
"metadata": {},
"outputs": [],
"source": [
"def convert_path_to_well_id(path_str):\n",
" \n",
" return path_str.split('_')[0].replace('/','_').replace('Plate','')\n",
" \n",
"def collate_rxrx3_core(batch):\n",
" \n",
" images = np.stack([np.array(i['jp2']) for i in batch]).reshape(-1,6,512,512)\n",
" images = np.vstack([patch_image(i) for i in images]) # convert to 4 256x256 patches\n",
" images = torch.from_numpy(images)\n",
" well_ids = [convert_path_to_well_id(i['__key__']) for i in batch[::6]]\n",
" return images, well_ids\n",
"\n",
"def iter_border_patches(width, height, patch_size):\n",
" \n",
" x_start, x_end, y_start, y_end = (0, width, 0, height)\n",
"\n",
" for x in range(x_start, x_end - patch_size + 1, patch_size):\n",
" for y in range(y_start, y_end - patch_size + 1, patch_size):\n",
" yield x, y\n",
"\n",
"def patch_image(image_array, patch_size=256):\n",
" \n",
" _, width, height = image_array.shape\n",
" output_patches = []\n",
" patch_count = 0\n",
" for x, y in iter_border_patches(width, height, patch_size):\n",
" patch = image_array[:, y : y + patch_size, x : x + patch_size].copy()\n",
" output_patches.append(patch)\n",
" \n",
" output_patches = np.stack(output_patches)\n",
" \n",
" return output_patches"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de308003-bcfc-4b59-9715-dd884b9b2536",
"metadata": {},
"outputs": [],
"source": [
"# Convert to PyTorch DataLoader\n",
"batch_size = 128\n",
"num_workers = 4\n",
"rxrx3_core_dataloader = DataLoader(rxrx3_core, batch_size=batch_size*6, shuffle=False, \n",
" collate_fn=collate_rxrx3_core, num_workers=num_workers)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e3ea6c2-d1aa-4e20-a175-d72ea636153e",
"metadata": {},
"outputs": [],
"source": [
"# Inference loop\n",
"num_features = 384\n",
"n_crops = 4\n",
"well_ids = []\n",
"emb_ind = 0\n",
"embeddings = np.zeros(\n",
" ((len(rxrx3_core_dataloader.dataset)//6), num_features), dtype=np.float32\n",
")\n",
"forward_pass_counter = 0\n",
"\n",
"for imgs, batch_well_ids in rxrx3_core_dataloader:\n",
"\n",
" if cuda_available:\n",
" with torch.amp.autocast(\"cuda\"), torch.no_grad():\n",
" latent = open_phenom.predict(imgs.cuda())\n",
" else:\n",
" latent = open_phenom.predict(imgs)\n",
" \n",
" latent = latent.view(-1, n_crops, num_features).mean(dim=1) # average over 4 256x256 crops per image\n",
" embeddings[emb_ind : (emb_ind + len(latent))] = latent.detach().cpu().numpy()\n",
" well_ids.extend(batch_well_ids)\n",
"\n",
" emb_ind += len(latent)\n",
" forward_pass_counter += 1\n",
" if forward_pass_counter % 5 == 0:\n",
" print(f\"forward pass {forward_pass_counter} of {len(rxrx3_core_dataloader)} done, wells inferenced {emb_ind}\")\n",
"\n",
"embedding_df = embeddings[:emb_ind]\n",
"embedding_df = pd.DataFrame(embedding_df)\n",
"embedding_df.columns = [f\"feature_{i}\" for i in range(num_features)]\n",
"embedding_df['well_id'] = well_ids\n",
"embedding_df = embedding_df[['well_id']+[f\"feature_{i}\" for i in range(num_features)]]\n",
"embedding_df.to_parquet('OpenPhenom_rxrx3-core_embeddings.parquet')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "photo2",
"language": "python",
"name": "photo2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|