File size: 9,414 Bytes
560d738
373b8b8
 
 
 
 
 
 
 
6877289
 
373b8b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# © Recursion Pharmaceuticals 2024
from functools import partial
from typing import Tuple, Union

import torch
import torch.nn as nn
from timm.models.helpers import checkpoint_seq
from timm.models.vision_transformer import Block, Mlp, VisionTransformer

from masking import transformer_random_masking
from vit import channel_agnostic_vit

# If interested in training new MAEs, combine an encoder and decoder into a new module, and you should
# leverage the flattening and unflattening utilities as needed from mae_utils.py.
# Be sure to use an encoder-decoder Linear projection layer to match encoder dims with decoder dimensions.
# As described in the paper, images are self-standardized at the start.


class SelfStandardize(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.self_standardize = nn.LazyInstanceNorm2d(
            affine=False, track_running_stats=False
        )

    def forward(self, pixels: torch.Tensor) -> torch.Tensor:
        x = pixels.float() / 255.0
        return self.self_standardize(x)


class MAEEncoder(nn.Module):
    def __init__(
        self,
        vit_backbone: VisionTransformer,
        max_in_chans: int = 6,
        channel_agnostic: bool = False,
    ) -> None:
        super().__init__()
        if channel_agnostic:
            self.vit_backbone = channel_agnostic_vit(
                vit_backbone, max_in_chans=max_in_chans
            )
        else:
            self.vit_backbone = vit_backbone
        self.max_in_chans = max_in_chans
        self.channel_agnostic = channel_agnostic

    @property
    def embed_dim(self) -> int:
        return int(self.vit_backbone.embed_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.vit_backbone.forward_features(x)
        x = self.vit_backbone.forward_head(x)
        return x  # type: ignore[no-any-return]

    def forward_masked(
        self,
        x: torch.Tensor,
        mask_ratio: float,
        constant_noise: Union[torch.Tensor, None] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        x = self.vit_backbone.patch_embed(x)
        x = self.vit_backbone._pos_embed(x)  # adds class token
        x_ = x[:, 1:, :]  # no class token
        x_, mask, ind_restore = transformer_random_masking(
            x_, mask_ratio, constant_noise
        )
        x = torch.cat([x[:, :1, :], x_], dim=1)  # add class token
        x = self.vit_backbone.norm_pre(x)

        if self.vit_backbone.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.vit_backbone.blocks, x)
        else:
            x = self.vit_backbone.blocks(x)
        x = self.vit_backbone.norm(x)
        return x, mask, ind_restore


class MAEDecoder(nn.Module):
    def __init__(
        self,
        embed_dim: int = 512,
        depth: int = 8,
        num_heads: int = 16,
        mlp_ratio: float = 4,
        qkv_bias: bool = True,
        norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),  # type: ignore[assignment]
    ) -> None:
        super().__init__()
        self.embed_dim = embed_dim
        self.pos_embeddings = None  # to be overwritten by MAE class
        self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.blocks = nn.Sequential(
            *[
                Block(
                    embed_dim,
                    num_heads,
                    mlp_ratio,
                    qkv_bias=qkv_bias,
                    norm_layer=norm_layer,
                )
                for i in range(depth)
            ]
        )
        self.norm = norm_layer(embed_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x + self.pos_embeddings
        x = self.blocks(x)
        x = self.norm(x)
        return x  # type: ignore[no-any-return]

    def forward_masked(
        self, x: torch.Tensor, ind_restore: torch.Tensor
    ) -> torch.Tensor:
        mask_tokens = self.mask_token.repeat(
            x.shape[0], ind_restore.shape[1] + 1 - x.shape[1], 1
        )
        x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1)  # remove class token
        x_ = torch.gather(
            x_, dim=1, index=ind_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])
        )  # unshuffle
        x = torch.cat([x[:, :1, :], x_], dim=1)  # add class token

        x = x + self.pos_embeddings
        x = self.blocks(x)
        x = self.norm(x)
        return x  # type: ignore[no-any-return]


class CrossAttention(nn.Module):
    def __init__(
        self, embed_dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = embed_dim // num_heads
        self.scale = head_dim**-0.5

        self.q = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
        self.kv = nn.Linear(embed_dim, embed_dim * 2, bias=qkv_bias)

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(embed_dim, embed_dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, context):
        B, N, C = x.shape
        _, M, _ = context.shape

        q = (
            self.q(x)
            .reshape(B, N, self.num_heads, C // self.num_heads)
            .permute(0, 2, 1, 3)
        )
        kv = (
            self.kv(context)
            .reshape(B, M, 2, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class CAMAEDecoder(nn.Module):
    def __init__(
        self,
        num_modalities: int = 6,
        tokens_per_modality: int = 256,
        embed_dim: int = 256,
        depth: int = 2,
        num_heads: int = 16,
        mlp_ratio: float = 4,
        qkv_bias: bool = True,
        norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),  # type: ignore[assignment]
    ) -> None:
        super().__init__()
        self.num_modalities = num_modalities
        self.tokens_per_modality = tokens_per_modality
        self.embed_dim = embed_dim
        self.pos_embeddings = None  # to be overwritten by MAE class
        self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.placeholder = nn.Parameter(
            torch.zeros(1, 1, embed_dim), requires_grad=False
        )
        self.modality_tokens = nn.ParameterList(
            [
                nn.Parameter(torch.zeros(1, 1, self.embed_dim))
                for modality in range(self.num_modalities)
            ]
        )

        self.cross_attention = CrossAttention(embed_dim=self.embed_dim)
        self.mlp = Mlp(self.embed_dim, hidden_features=int(self.embed_dim * mlp_ratio))

        self.decoders = nn.ModuleList(
            [
                nn.Sequential(
                    *[
                        Block(
                            embed_dim,
                            num_heads,
                            mlp_ratio,
                            qkv_bias=qkv_bias,
                            norm_layer=norm_layer,
                        )
                        for i in range(depth)
                    ]
                )
                for modality in range(self.num_modalities)
            ]
        )
        # self.norm = norm_layer(embed_dim)  # we decided to drop the last layer norm
        self.context_norm = norm_layer(embed_dim)
        self.query_norm = norm_layer(embed_dim)
        self.out_norm = norm_layer(embed_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_m_s = []

        modality_tokens_concat = torch.cat(
            [
                self.placeholder,
            ]  # placeholder for class token
            + [
                m_t.repeat(1, self.tokens_per_modality, 1)
                for m_t in self.modality_tokens
            ],
            dim=1,
        )

        x = (
            x + self.pos_embeddings + modality_tokens_concat
        )  # add pos and tiled modality tokens
        x_ = x[:, 1:, :]  # no class token
        for m, decoder in enumerate(
            self.decoders
        ):  # iterate through modalities and decoders
            x_m = x_[
                :, m * self.tokens_per_modality : (m + 1) * self.tokens_per_modality, :
            ]
            x_m = self.cross_attention(self.query_norm(x_m), self.context_norm(x_))
            x_m = x_m + self.mlp(self.out_norm(x_m))
            x_m = decoder(x_m)
            x_m_s.append(x_m)
        x_m_s = torch.cat(x_m_s, dim=1)  # concat all tokens
        # x_m_s = self.norm(x_m_s)  # we decided to drop the last layer norm
        x_m_s = torch.cat([x[:, :1, :], x_m_s], dim=1)  # add back class token

        return x_m_s

    def forward_masked(
        self, x: torch.Tensor, ind_restore: torch.Tensor
    ) -> torch.Tensor:
        mask_tokens = self.mask_token.repeat(
            x.shape[0], ind_restore.shape[1] + 1 - x.shape[1], 1
        )
        x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1)  # remove class token
        x_ = torch.gather(
            x_, dim=1, index=ind_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])
        )  # unshuffle
        x = torch.cat([x[:, :1, :], x_], dim=1)  # add class token
        x = self.forward(x)
        return x