OpenPhenom / test_huggingface_mae.py
recursionaut's picture
testing files upload (#7)
6ded986 verified
raw
history blame
1.21 kB
import pytest
import torch
from huggingface_mae import MAEModel
huggingface_phenombeta_model_dir = "."
# huggingface_modelpath = "recursionpharma/test-pb-model"
@pytest.fixture
def huggingface_model():
# Make sure you have the model/config downloaded from https://huggingface.co/recursionpharma/test-pb-model to this directory
# huggingface-cli download recursionpharma/test-pb-model --local-dir=.
huggingface_model = MAEModel.from_pretrained(huggingface_phenombeta_model_dir)
huggingface_model.eval()
return huggingface_model
@pytest.mark.parametrize("C", [1, 4, 6, 11])
@pytest.mark.parametrize("return_channelwise_embeddings", [True, False])
def test_model_predict(huggingface_model, C, return_channelwise_embeddings):
example_input_array = torch.randint(
low=0,
high=255,
size=(2, C, 256, 256),
dtype=torch.uint8,
device=huggingface_model.device,
)
huggingface_model.return_channelwise_embeddings = return_channelwise_embeddings
embeddings = huggingface_model.predict(example_input_array)
expected_output_dim = 384 * C if return_channelwise_embeddings else 384
assert embeddings.shape == (2, expected_output_dim)