recursionaut
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ This model is a [channel-agnostic masked autoencoder](https://openaccess.thecvf.
|
|
21 |
- **Developed, funded, and shared by:** Recursion
|
22 |
- **Model type:** Vision transformer CA-MAE
|
23 |
- **Image modality:** Optimized for microscopy images from the CellPainting assay
|
24 |
-
- **License:**
|
25 |
|
26 |
|
27 |
### Model Sources
|
@@ -67,7 +67,7 @@ import torch
|
|
67 |
|
68 |
from huggingface_mae import MAEModel
|
69 |
|
70 |
-
|
71 |
# huggingface_modelpath = "recursionpharma/OpenPhenom"
|
72 |
|
73 |
|
@@ -75,7 +75,7 @@ huggingface_phenombeta_model_dir = "."
|
|
75 |
def huggingface_model():
|
76 |
# Make sure you have the model/config downloaded from https://huggingface.co/recursionpharma/OpenPhenom to this directory
|
77 |
# huggingface-cli download recursionpharma/OpenPhenom --local-dir=.
|
78 |
-
huggingface_model = MAEModel.from_pretrained(
|
79 |
huggingface_model.eval()
|
80 |
return huggingface_model
|
81 |
|
@@ -96,6 +96,8 @@ def test_model_predict(huggingface_model, C, return_channelwise_embeddings):
|
|
96 |
assert embeddings.shape == (2, expected_output_dim)
|
97 |
```
|
98 |
|
|
|
|
|
99 |
|
100 |
## Training, evaluation and testing details
|
101 |
|
|
|
21 |
- **Developed, funded, and shared by:** Recursion
|
22 |
- **Model type:** Vision transformer CA-MAE
|
23 |
- **Image modality:** Optimized for microscopy images from the CellPainting assay
|
24 |
+
- **License:** [Non-Commercial End User License Agreement](https://huggingface.co/recursionpharma/OpenPhenom/blob/main/LICENSE)
|
25 |
|
26 |
|
27 |
### Model Sources
|
|
|
67 |
|
68 |
from huggingface_mae import MAEModel
|
69 |
|
70 |
+
huggingface_openphenom_model_dir = "."
|
71 |
# huggingface_modelpath = "recursionpharma/OpenPhenom"
|
72 |
|
73 |
|
|
|
75 |
def huggingface_model():
|
76 |
# Make sure you have the model/config downloaded from https://huggingface.co/recursionpharma/OpenPhenom to this directory
|
77 |
# huggingface-cli download recursionpharma/OpenPhenom --local-dir=.
|
78 |
+
huggingface_model = MAEModel.from_pretrained(huggingface_openphenom_model_dir)
|
79 |
huggingface_model.eval()
|
80 |
return huggingface_model
|
81 |
|
|
|
96 |
assert embeddings.shape == (2, expected_output_dim)
|
97 |
```
|
98 |
|
99 |
+
**Note: Currently, the model cannot be loaded via the `AutoModel` available in HuggingFace transformers library**
|
100 |
+
|
101 |
|
102 |
## Training, evaluation and testing details
|
103 |
|