# Masked Autoencoders are Scalable Learners of Cellular Morphology Official repo for Recursion's accepted spotlight paper at [NeurIPS 2023 Generative AI & Biology workshop](https://openreview.net/group?id=NeurIPS.cc/2023/Workshop/GenBio). Paper: https://arxiv.org/abs/2309.16064 ![vit_diff_mask_ratios](https://github.com/recursionpharma/maes_microscopy/assets/109550980/409ac47b-a7d4-4158-b030-a88234e2b21f) ## Provided code The baseline Vision Transformer architecture backbone used in this work can be built with the following code snippet from Timm: ``` import timm.models.vision_transformer as vit def vit_base_patch16_256(**kwargs): default_kwargs = dict( img_size=256, in_chans=6, num_classes=0, fc_norm=None, class_token=True, drop_path_rate=0.1, init_values=0.0001, block_fn=vit.ParallelScalingBlock, qkv_bias=False, qk_norm=True, ) for k, v in kwargs.items(): default_kwargs[k] = v return vit.vit_base_patch16_224(**default_kwargs) ``` Additional code will be released as the date of the workshop gets closer. ## Provided models Stay tuned...