Upload folder using huggingface_hub
Browse files- decoder_model.py +22 -0
- decoder_state_dict.pth +3 -0
decoder_model.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Your existing Decoder class code goes here
|
3 |
+
# For example:
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
class Decoder(nn.Module):
|
8 |
+
def __init__(self, embed_dim=768, num_heads=8, hidden_dim=1024, num_layers=2):
|
9 |
+
super(Decoder, self).__init__()
|
10 |
+
encoder_layer = nn.TransformerEncoderLayer(
|
11 |
+
d_model=embed_dim,
|
12 |
+
nhead=num_heads,
|
13 |
+
dim_feedforward=hidden_dim
|
14 |
+
)
|
15 |
+
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
16 |
+
self.output_layer = nn.Linear(embed_dim, embed_dim)
|
17 |
+
|
18 |
+
def forward(self, stacked_emb):
|
19 |
+
x = stacked_emb.permute(1, 0, 2)
|
20 |
+
x = self.transformer(x)
|
21 |
+
combined_emb = x.mean(dim=0)
|
22 |
+
return self.output_layer(combined_emb)
|
decoder_state_dict.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdaf828572883b42267344e5e2be29431ec225ecd6ac8d65db68e252120837fe
|
3 |
+
size 33893202
|