File size: 5,960 Bytes
836e5e4
 
 
587ddbf
 
 
 
 
 
 
 
836e5e4
 
 
 
 
 
587ddbf
836e5e4
 
 
 
 
587ddbf
836e5e4
587ddbf
 
 
 
836e5e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587ddbf
836e5e4
d8d5c0d
 
836e5e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d5c0d
 
 
836e5e4
d8d5c0d
587ddbf
 
 
 
 
 
 
 
 
 
 
 
836e5e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
base_model: google/gemma-2-2b-it
library_name: peft
license: apache-2.0
language:
- es
tags:
- news
- chat
- LoRa
- conversational AI
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

Lightweight finetuning of google/gemma-2-2b-it on a public dataset of news from Spanish digital newspapers (https://www.kaggle.com/datasets/josemamuiz/noticias-laraznpblico/).

## Model Details

### Model Description

This model is fine-tuned using LoRa (Low-Rank Adaptation) on the "Noticias La Razón y Público" dataset, a collection of Spanish news articles. The finetuning was done with lightweight methods to ensure efficient training while maintaining performance on the news-related language generation tasks.

- **Developed by:** https://talkingtochatbots.com
- **Language(s) (NLP):** Spanish (es)
- **License:** apache-2.0
- **Finetuned from model:** google/gemma-2-2b-it

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

This model can be used for **conversational AI tasks** related to Spanish-language news. The fine-tuned LoRa model is especially suitable for use cases that require both understanding and generating text, such as chat-based interactions, answering questions about news, and discussing headlines.

Copy the code from this Gist for easy chating using Jupyter Notebook: https://gist.github.com/reddgr/20c2e3ea205d1fedfdc8be94dc5c1237

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Copy the code from this Gist for easy chating using Jupyter Notebook: https://gist.github.com/reddgr/20c2e3ea205d1fedfdc8be94dc5c1237

Additionally, you can use the code below to get started with the model.

!python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

save_directory = "./fine_tuned_model"
tokenizer = AutoTokenizer.from_pretrained(save_directory)
model = AutoModelForCausalLM.from_pretrained(save_directory)
peft_model = PeftModel.from_pretrained(model, save_directory)

input_text = "¿Qué opinas de las noticias recientes sobre la economía?"
inputs = tokenizer(input_text, return_tensors="pt")
output = peft_model.generate(**inputs, max_length=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]
### Framework versions

- PEFT 0.12.0