Update README.md
Browse files
README.md
CHANGED
@@ -1,63 +1,65 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
license: apache-2.0
|
4 |
-
base_model: distilbert-base-uncased
|
5 |
-
tags:
|
6 |
-
- generated_from_keras_callback
|
7 |
-
model-index:
|
8 |
-
- name: tl-test-learn-prompt-classifier
|
9 |
-
results: []
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
50 |
-
|
51 |
-
| 0.
|
52 |
-
| 0.
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
-
|
63 |
-
-
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: distilbert-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_keras_callback
|
7 |
+
model-index:
|
8 |
+
- name: tl-test-learn-prompt-classifier
|
9 |
+
results: []
|
10 |
+
datasets:
|
11 |
+
- reddgr/tl-test-learn-prompts
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
15 |
+
probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# tl-test-learn-prompt-classifier
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Train Loss: 0.1733
|
22 |
+
- Train Accuracy: 0.9756
|
23 |
+
- Validation Loss: 0.3006
|
24 |
+
- Validation Accuracy: 0.8977
|
25 |
+
- Epoch: 6
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
|
45 |
+
- training_precision: float32
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|
50 |
+
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
|
51 |
+
| 0.6870 | 0.5707 | 0.6656 | 0.6136 | 0 |
|
52 |
+
| 0.6542 | 0.6293 | 0.6289 | 0.6477 | 1 |
|
53 |
+
| 0.5970 | 0.7902 | 0.5541 | 0.7955 | 2 |
|
54 |
+
| 0.4936 | 0.8829 | 0.4490 | 0.8523 | 3 |
|
55 |
+
| 0.3649 | 0.9415 | 0.3775 | 0.875 | 4 |
|
56 |
+
| 0.2563 | 0.9561 | 0.3254 | 0.8977 | 5 |
|
57 |
+
| 0.1733 | 0.9756 | 0.3006 | 0.8977 | 6 |
|
58 |
+
|
59 |
+
|
60 |
+
### Framework versions
|
61 |
+
|
62 |
+
- Transformers 4.44.2
|
63 |
+
- TensorFlow 2.18.0-dev20240717
|
64 |
+
- Datasets 2.21.0
|
65 |
+
- Tokenizers 0.19.1
|