reddgr commited on
Commit
e3aed10
·
verified ·
1 Parent(s): 50950d2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -63
README.md CHANGED
@@ -1,63 +1,65 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: distilbert-base-uncased
5
- tags:
6
- - generated_from_keras_callback
7
- model-index:
8
- - name: tl-test-learn-prompt-classifier
9
- results: []
10
- ---
11
-
12
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
13
- probably proofread and complete it, then remove this comment. -->
14
-
15
- # tl-test-learn-prompt-classifier
16
-
17
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
18
- It achieves the following results on the evaluation set:
19
- - Train Loss: 0.1733
20
- - Train Accuracy: 0.9756
21
- - Validation Loss: 0.3006
22
- - Validation Accuracy: 0.8977
23
- - Epoch: 6
24
-
25
- ## Model description
26
-
27
- More information needed
28
-
29
- ## Intended uses & limitations
30
-
31
- More information needed
32
-
33
- ## Training and evaluation data
34
-
35
- More information needed
36
-
37
- ## Training procedure
38
-
39
- ### Training hyperparameters
40
-
41
- The following hyperparameters were used during training:
42
- - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
43
- - training_precision: float32
44
-
45
- ### Training results
46
-
47
- | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
48
- |:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
49
- | 0.6870 | 0.5707 | 0.6656 | 0.6136 | 0 |
50
- | 0.6542 | 0.6293 | 0.6289 | 0.6477 | 1 |
51
- | 0.5970 | 0.7902 | 0.5541 | 0.7955 | 2 |
52
- | 0.4936 | 0.8829 | 0.4490 | 0.8523 | 3 |
53
- | 0.3649 | 0.9415 | 0.3775 | 0.875 | 4 |
54
- | 0.2563 | 0.9561 | 0.3254 | 0.8977 | 5 |
55
- | 0.1733 | 0.9756 | 0.3006 | 0.8977 | 6 |
56
-
57
-
58
- ### Framework versions
59
-
60
- - Transformers 4.44.2
61
- - TensorFlow 2.18.0-dev20240717
62
- - Datasets 2.21.0
63
- - Tokenizers 0.19.1
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert-base-uncased
5
+ tags:
6
+ - generated_from_keras_callback
7
+ model-index:
8
+ - name: tl-test-learn-prompt-classifier
9
+ results: []
10
+ datasets:
11
+ - reddgr/tl-test-learn-prompts
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
15
+ probably proofread and complete it, then remove this comment. -->
16
+
17
+ # tl-test-learn-prompt-classifier
18
+
19
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Train Loss: 0.1733
22
+ - Train Accuracy: 0.9756
23
+ - Validation Loss: 0.3006
24
+ - Validation Accuracy: 0.8977
25
+ - Epoch: 6
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
45
+ - training_precision: float32
46
+
47
+ ### Training results
48
+
49
+ | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
50
+ |:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
51
+ | 0.6870 | 0.5707 | 0.6656 | 0.6136 | 0 |
52
+ | 0.6542 | 0.6293 | 0.6289 | 0.6477 | 1 |
53
+ | 0.5970 | 0.7902 | 0.5541 | 0.7955 | 2 |
54
+ | 0.4936 | 0.8829 | 0.4490 | 0.8523 | 3 |
55
+ | 0.3649 | 0.9415 | 0.3775 | 0.875 | 4 |
56
+ | 0.2563 | 0.9561 | 0.3254 | 0.8977 | 5 |
57
+ | 0.1733 | 0.9756 | 0.3006 | 0.8977 | 6 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.44.2
63
+ - TensorFlow 2.18.0-dev20240717
64
+ - Datasets 2.21.0
65
+ - Tokenizers 0.19.1