reddgr commited on
Commit
750b607
·
verified ·
1 Parent(s): 6a79f13

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -61
README.md CHANGED
@@ -1,61 +1,68 @@
1
- ---
2
- library_name: transformers
3
- license: mit
4
- base_model: facebook/bart-large-mnli
5
- tags:
6
- - generated_from_keras_callback
7
- model-index:
8
- - name: zero-shot-prompt-classifier-bart-ft
9
- results: []
10
- ---
11
-
12
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
13
- probably proofread and complete it, then remove this comment. -->
14
-
15
- # zero-shot-prompt-classifier-bart-ft
16
-
17
- This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on an unknown dataset.
18
- It achieves the following results on the evaluation set:
19
- - Train Loss: 0.4474
20
- - Train Accuracy: 0.7843
21
- - Validation Loss: 1.5942
22
- - Validation Accuracy: 0.4657
23
- - Epoch: 4
24
-
25
- ## Model description
26
-
27
- More information needed
28
-
29
- ## Intended uses & limitations
30
-
31
- More information needed
32
-
33
- ## Training and evaluation data
34
-
35
- More information needed
36
-
37
- ## Training procedure
38
-
39
- ### Training hyperparameters
40
-
41
- The following hyperparameters were used during training:
42
- - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
43
- - training_precision: float32
44
-
45
- ### Training results
46
-
47
- | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
48
- |:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
49
- | 0.9969 | 0.5490 | 0.9182 | 0.6225 | 0 |
50
- | 0.7647 | 0.6601 | 1.0025 | 0.5441 | 1 |
51
- | 0.6465 | 0.7157 | 1.1472 | 0.5392 | 2 |
52
- | 0.5849 | 0.7418 | 1.1974 | 0.5049 | 3 |
53
- | 0.4474 | 0.7843 | 1.5942 | 0.4657 | 4 |
54
-
55
-
56
- ### Framework versions
57
-
58
- - Transformers 4.44.2
59
- - TensorFlow 2.18.0-dev20240717
60
- - Datasets 2.21.0
61
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: facebook/bart-large-mnli
5
+ tags:
6
+ - generated_from_keras_callback
7
+ model-index:
8
+ - name: zero-shot-prompt-classifier-bart-ft
9
+ results: []
10
+ datasets:
11
+ - reddgr/nli-chatbot-prompt-categorization
12
+ ---
13
+
14
+ # zero-shot-prompt-classifier-bart-ft
15
+
16
+ This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the [reddgr/nli-chatbot-prompt-categorization](https://huggingface.co/datasets/reddgr/nli-chatbot-prompt-categorization) dataset.
17
+
18
+ The purpose of the model is to help classify chatbot prompts into categories that are relevant in the context of working with LLM conversational tools:
19
+ coding assistance, language assistance, role play, creative writing, general knowledge questions...
20
+
21
+ The model is fine-tuned and tested on the natural language inference (NLI) dataset [reddgr/nli-chatbot-prompt-categorization](https://huggingface.co/datasets/reddgr/nli-chatbot-prompt-categorization)
22
+
23
+ Below is a confusion matrix calculated on zero-shot inferences for the 10 most popular categories in the Test split of [reddgr/nli-chatbot-prompt-categorization](https://huggingface.co/datasets/reddgr/nli-chatbot-prompt-categorization) at the time of the first model upload:
24
+
25
+ ![Zero-shot prompt classification confusion matrix for reddgr/zero-shot-prompt-classifier-bart-ft](https://talkingtochatbots.com/wp-content/uploads/2024/12/NLI-prompt-classification.png)
26
+
27
+ As of the first version of the model uploaded to hub, the fine-tuned version outperforms the base model [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) by 8 percentage points in this test set with 10 candidate zero-shot classes (the most frequent categories in the test split of [reddgr/nli-chatbot-prompt-categorization](https://huggingface.co/datasets/reddgr/nli-chatbot-prompt-categorization) at the time of the first model upload.
28
+
29
+ The dataset and the model are continously updated as they assist with content publishing on my website [Talking to Chatbots](https://talkingtochatbots)
30
+
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
50
+ - training_precision: float32
51
+
52
+ ### Training results
53
+
54
+ | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
55
+ |:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
56
+ | 0.9969 | 0.5490 | 0.9182 | 0.6225 | 0 |
57
+ | 0.7647 | 0.6601 | 1.0025 | 0.5441 | 1 |
58
+ | 0.6465 | 0.7157 | 1.1472 | 0.5392 | 2 |
59
+ | 0.5849 | 0.7418 | 1.1974 | 0.5049 | 3 |
60
+ | 0.4474 | 0.7843 | 1.5942 | 0.4657 | 4 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.44.2
66
+ - TensorFlow 2.18.0-dev20240717
67
+ - Datasets 2.21.0
68
+ - Tokenizers 0.19.1