File size: 8,914 Bytes
06ab6dd 1abe9e0 06ab6dd 1abe9e0 06ab6dd 1abe9e0 06ab6dd 1abe9e0 06ab6dd 1abe9e0 06ab6dd 1abe9e0 06ab6dd 1abe9e0 06ab6dd 1abe9e0 06ab6dd 1abe9e0 06ab6dd 1abe9e0 06ab6dd 1e43516 06ab6dd 1e43516 adbdefc 06ab6dd 1e43516 06ab6dd 1e43516 06ab6dd 1e43516 06ab6dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
一个基于VITS的简单易用的变声框架<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange
)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
[**更新日志**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/docs/Changelog_CN.md) | [**常见问题解答**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98%E8%A7%A3%E7%AD%94) | [**AutoDL·5毛钱训练AI歌手**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/Autodl%E8%AE%AD%E7%BB%83RVC%C2%B7AI%E6%AD%8C%E6%89%8B%E6%95%99%E7%A8%8B) | [**对照实验记录**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/Autodl%E8%AE%AD%E7%BB%83RVC%C2%B7AI%E6%AD%8C%E6%89%8B%E6%95%99%E7%A8%8B](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/%E5%AF%B9%E7%85%A7%E5%AE%9E%E9%AA%8C%C2%B7%E5%AE%9E%E9%AA%8C%E8%AE%B0%E5%BD%95)) | [**在线演示**](https://modelscope.cn/studios/FlowerCry/RVCv2demo)
[**English**](./docs/en/README.en.md) | [**中文简体**](./README.md) | [**日本語**](./docs/jp/README.ja.md) | [**한국어**](./docs/kr/README.ko.md) ([**韓國語**](./docs/kr/README.ko.han.md)) | [**Français**](./docs/fr/README.fr.md) | [**Türkçe**](./docs/tr/README.tr.md) | [**Português**](./docs/pt/README.pt.md)
</div>
> 底模使用接近50小时的开源高质量VCTK训练集训练,无版权方面的顾虑,请大家放心使用
> 请期待RVCv3的底模,参数更大,数据更大,效果更好,基本持平的推理速度,需要训练数据量更少。
<table>
<tr>
<td align="center">训练推理界面</td>
<td align="center">实时变声界面</td>
</tr>
<tr>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/092e5c12-0d49-4168-a590-0b0ef6a4f630"></td>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/730b4114-8805-44a1-ab1a-04668f3c30a6"></td>
</tr>
<tr>
<td align="center">go-web.bat</td>
<td align="center">go-realtime-gui.bat</td>
</tr>
<tr>
<td align="center">可以自由选择想要执行的操作。</td>
<td align="center">我们已经实现端到端170ms延迟。如使用ASIO输入输出设备,已能实现端到端90ms延迟,但非常依赖硬件驱动支持。</td>
</tr>
</table>
## 简介
本仓库具有以下特点
+ 使用top1检索替换输入源特征为训练集特征来杜绝音色泄漏
+ 即便在相对较差的显卡上也能快速训练
+ 使用少量数据进行训练也能得到较好结果(推荐至少收集10分钟低底噪语音数据)
+ 可以通过模型融合来改变音色(借助ckpt处理选项卡中的ckpt-merge)
+ 简单易用的网页界面
+ 可调用UVR5模型来快速分离人声和伴奏
+ 使用最先进的[人声音高提取算法InterSpeech2023-RMVPE](#参考项目)根绝哑音问题。效果最好(显著地)但比crepe_full更快、资源占用更小
+ A卡I卡加速支持
点此查看我们的[演示视频](https://www.bilibili.com/video/BV1pm4y1z7Gm/) !
## 环境配置
以下指令需在 Python 版本大于3.8的环境中执行。
### Windows/Linux/MacOS等平台通用方法
下列方法任选其一。
#### 1. 通过 pip 安装依赖
1. 安装Pytorch及其核心依赖,若已安装则跳过。参考自: https://pytorch.org/get-started/locally/
```bash
pip install torch torchvision torchaudio
```
2. 如果是 win 系统 + Nvidia Ampere 架构(RTX30xx),根据 #21 的经验,需要指定 pytorch 对应的 cuda 版本
```bash
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
```
3. 根据自己的显卡安装对应依赖
- N卡
```bash
pip install -r requirements.txt
```
- A卡/I卡
```bash
pip install -r requirements-dml.txt
```
- A卡ROCM(Linux)
```bash
pip install -r requirements-amd.txt
```
- I卡IPEX(Linux)
```bash
pip install -r requirements-ipex.txt
```
#### 2. 通过 poetry 来安装依赖
安装 Poetry 依赖管理工具,若已安装则跳过。参考自: https://python-poetry.org/docs/#installation
```bash
curl -sSL https://install.python-poetry.org | python3 -
```
通过 Poetry 安装依赖时,python 建议使用 3.7-3.10 版本,其余版本在安装 llvmlite==0.39.0 时会出现冲突
```bash
poetry init -n
poetry env use "path to your python.exe"
poetry run pip install -r requirments.txt
```
### MacOS
可以通过 `run.sh` 来安装依赖
```bash
sh ./run.sh
```
## 其他预模型准备
RVC需要其他一些预模型来推理和训练。
你可以从我们的[Hugging Face space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)下载到这些模型。
### 1. 下载 assets
以下是一份清单,包括了所有RVC所需的预模型和其他文件的名称。你可以在`tools`文件夹找到下载它们的脚本。
- ./assets/hubert/hubert_base.pt
- ./assets/pretrained
- ./assets/uvr5_weights
想使用v2版本模型的话,需要额外下载
- ./assets/pretrained_v2
### 2. 安装 ffmpeg
若ffmpeg和ffprobe已安装则跳过。
#### Ubuntu/Debian 用户
```bash
sudo apt install ffmpeg
```
#### MacOS 用户
```bash
brew install ffmpeg
```
#### Windows 用户
下载后放置在根目录。
- 下载[ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe)
- 下载[ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe)
### 3. 下载 rmvpe 人声音高提取算法所需文件
如果你想使用最新的RMVPE人声音高提取算法,则你需要下载音高提取模型参数并放置于RVC根目录。
- 下载[rmvpe.pt](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt)
#### 下载 rmvpe 的 dml 环境(可选, A卡/I卡用户)
- 下载[rmvpe.onnx](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.onnx)
### 4. AMD显卡Rocm(可选, 仅Linux)
如果你想基于AMD的Rocm技术在Linux系统上运行RVC,请先在[这里](https://rocm.docs.amd.com/en/latest/deploy/linux/os-native/install.html)安装所需的驱动。
若你使用的是Arch Linux,可以使用pacman来安装所需驱动:
````
pacman -S rocm-hip-sdk rocm-opencl-sdk
````
对于某些型号的显卡,你可能需要额外配置如下的环境变量(如:RX6700XT):
````
export ROCM_PATH=/opt/rocm
export HSA_OVERRIDE_GFX_VERSION=10.3.0
````
同时确保你的当前用户处于`render`与`video`用户组内:
````
sudo usermod -aG render $USERNAME
sudo usermod -aG video $USERNAME
````
## 开始使用
### 直接启动
使用以下指令来启动 WebUI
```bash
python infer-web.py
```
若先前使用 Poetry 安装依赖,则可以通过以下方式启动WebUI
```bash
poetry run python infer-web.py
```
### 使用整合包
下载并解压`RVC-beta.7z`
#### Windows 用户
双击`go-web.bat`
#### MacOS 用户
```bash
sh ./run.sh
```
### 对于需要使用IPEX技术的I卡用户(仅Linux)
```bash
source /opt/intel/oneapi/setvars.sh
```
## 参考项目
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
+ [Vocal pitch extraction:RMVPE](https://github.com/Dream-High/RMVPE)
+ The pretrained model is trained and tested by [yxlllc](https://github.com/yxlllc/RMVPE) and [RVC-Boss](https://github.com/RVC-Boss).
## 感谢所有贡献者作出的努力
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>
|