File size: 17,549 Bytes
1e43516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
from io import BytesIO
import os
import sys
import traceback
from infer.lib import jit
from infer.lib.jit.get_synthesizer import get_synthesizer
from time import time as ttime
import fairseq
import faiss
import numpy as np
import parselmouth
import pyworld
import scipy.signal as signal
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchcrepe
from torchaudio.transforms import Resample

now_dir = os.getcwd()
sys.path.append(now_dir)
from multiprocessing import Manager as M

from configs.config import Config

# config = Config()

mm = M()


def printt(strr, *args):
    if len(args) == 0:
        print(strr)
    else:
        print(strr % args)


# config.device=torch.device("cpu")########强制cpu测试
# config.is_half=False########强制cpu测试
class RVC:
    def __init__(

        self,

        key,

        formant,

        pth_path,

        index_path,

        index_rate,

        n_cpu,

        inp_q,

        opt_q,

        config: Config,

        last_rvc=None,

    ) -> None:
        """

        初始化

        """
        try:
            if config.dml == True:

                def forward_dml(ctx, x, scale):
                    ctx.scale = scale
                    res = x.clone().detach()
                    return res

                fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
            # global config
            self.config = config
            self.inp_q = inp_q
            self.opt_q = opt_q
            # device="cpu"########强制cpu测试
            self.device = config.device
            self.f0_up_key = key
            self.formant_shift = formant
            self.f0_min = 50
            self.f0_max = 1100
            self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
            self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
            self.n_cpu = n_cpu
            self.use_jit = self.config.use_jit
            self.is_half = config.is_half

            if index_rate != 0:
                self.index = faiss.read_index(index_path)
                self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
                printt("Index search enabled")
            self.pth_path: str = pth_path
            self.index_path = index_path
            self.index_rate = index_rate
            self.cache_pitch: torch.Tensor = torch.zeros(
                1024, device=self.device, dtype=torch.long
            )
            self.cache_pitchf = torch.zeros(
                1024, device=self.device, dtype=torch.float32
            )

            self.resample_kernel = {}

            if last_rvc is None:
                models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
                    ["assets/hubert/hubert_base.pt"],
                    suffix="",
                )
                hubert_model = models[0]
                hubert_model = hubert_model.to(self.device)
                if self.is_half:
                    hubert_model = hubert_model.half()
                else:
                    hubert_model = hubert_model.float()
                hubert_model.eval()
                self.model = hubert_model
            else:
                self.model = last_rvc.model

            self.net_g: nn.Module = None

            def set_default_model():
                self.net_g, cpt = get_synthesizer(self.pth_path, self.device)
                self.tgt_sr = cpt["config"][-1]
                cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
                self.if_f0 = cpt.get("f0", 1)
                self.version = cpt.get("version", "v1")
                if self.is_half:
                    self.net_g = self.net_g.half()
                else:
                    self.net_g = self.net_g.float()

            def set_jit_model():
                jit_pth_path = self.pth_path.rstrip(".pth")
                jit_pth_path += ".half.jit" if self.is_half else ".jit"
                reload = False
                if str(self.device) == "cuda":
                    self.device = torch.device("cuda:0")
                if os.path.exists(jit_pth_path):
                    cpt = jit.load(jit_pth_path)
                    model_device = cpt["device"]
                    if model_device != str(self.device):
                        reload = True
                else:
                    reload = True

                if reload:
                    cpt = jit.synthesizer_jit_export(
                        self.pth_path,
                        "script",
                        None,
                        device=self.device,
                        is_half=self.is_half,
                    )

                self.tgt_sr = cpt["config"][-1]
                self.if_f0 = cpt.get("f0", 1)
                self.version = cpt.get("version", "v1")
                self.net_g = torch.jit.load(
                    BytesIO(cpt["model"]), map_location=self.device
                )
                self.net_g.infer = self.net_g.forward
                self.net_g.eval().to(self.device)

            def set_synthesizer():
                if self.use_jit and not config.dml:
                    if self.is_half and "cpu" in str(self.device):
                        printt(
                            "Use default Synthesizer model. \

                                    Jit is not supported on the CPU for half floating point"
                        )
                        set_default_model()
                    else:
                        set_jit_model()
                else:
                    set_default_model()

            if last_rvc is None or last_rvc.pth_path != self.pth_path:
                set_synthesizer()
            else:
                self.tgt_sr = last_rvc.tgt_sr
                self.if_f0 = last_rvc.if_f0
                self.version = last_rvc.version
                self.is_half = last_rvc.is_half
                if last_rvc.use_jit != self.use_jit:
                    set_synthesizer()
                else:
                    self.net_g = last_rvc.net_g

            if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"):
                self.model_rmvpe = last_rvc.model_rmvpe
            if last_rvc is not None and hasattr(last_rvc, "model_fcpe"):
                self.device_fcpe = last_rvc.device_fcpe
                self.model_fcpe = last_rvc.model_fcpe
        except:
            printt(traceback.format_exc())

    def change_key(self, new_key):
        self.f0_up_key = new_key

    def change_formant(self, new_formant):
        self.formant_shift = new_formant

    def change_index_rate(self, new_index_rate):
        if new_index_rate != 0 and self.index_rate == 0:
            self.index = faiss.read_index(self.index_path)
            self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
            printt("Index search enabled")
        self.index_rate = new_index_rate

    def get_f0_post(self, f0):
        if not torch.is_tensor(f0):
            f0 = torch.from_numpy(f0)
        f0 = f0.float().to(self.device).squeeze()
        f0_mel = 1127 * torch.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
            self.f0_mel_max - self.f0_mel_min
        ) + 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > 255] = 255
        f0_coarse = torch.round(f0_mel).long()
        return f0_coarse, f0

    def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
        n_cpu = int(n_cpu)
        if method == "crepe":
            return self.get_f0_crepe(x, f0_up_key)
        if method == "rmvpe":
            return self.get_f0_rmvpe(x, f0_up_key)
        if method == "fcpe":
            return self.get_f0_fcpe(x, f0_up_key)
        x = x.cpu().numpy()
        if method == "pm":
            p_len = x.shape[0] // 160 + 1
            f0_min = 65
            l_pad = int(np.ceil(1.5 / f0_min * 16000))
            r_pad = l_pad + 1
            s = parselmouth.Sound(np.pad(x, (l_pad, r_pad)), 16000).to_pitch_ac(
                time_step=0.01,
                voicing_threshold=0.6,
                pitch_floor=f0_min,
                pitch_ceiling=1100,
            )
            assert np.abs(s.t1 - 1.5 / f0_min) < 0.001
            f0 = s.selected_array["frequency"]
            if len(f0) < p_len:
                f0 = np.pad(f0, (0, p_len - len(f0)))
            f0 = f0[:p_len]
            f0 *= pow(2, f0_up_key / 12)
            return self.get_f0_post(f0)
        if n_cpu == 1:
            f0, t = pyworld.harvest(
                x.astype(np.double),
                fs=16000,
                f0_ceil=1100,
                f0_floor=50,
                frame_period=10,
            )
            f0 = signal.medfilt(f0, 3)
            f0 *= pow(2, f0_up_key / 12)
            return self.get_f0_post(f0)
        f0bak = np.zeros(x.shape[0] // 160 + 1, dtype=np.float64)
        length = len(x)
        part_length = 160 * ((length // 160 - 1) // n_cpu + 1)
        n_cpu = (length // 160 - 1) // (part_length // 160) + 1
        ts = ttime()
        res_f0 = mm.dict()
        for idx in range(n_cpu):
            tail = part_length * (idx + 1) + 320
            if idx == 0:
                self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
            else:
                self.inp_q.put(
                    (idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
                )
        while 1:
            res_ts = self.opt_q.get()
            if res_ts == ts:
                break
        f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
        for idx, f0 in enumerate(f0s):
            if idx == 0:
                f0 = f0[:-3]
            elif idx != n_cpu - 1:
                f0 = f0[2:-3]
            else:
                f0 = f0[2:]
            f0bak[part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]] = (
                f0
            )
        f0bak = signal.medfilt(f0bak, 3)
        f0bak *= pow(2, f0_up_key / 12)
        return self.get_f0_post(f0bak)

    def get_f0_crepe(self, x, f0_up_key):
        if "privateuseone" in str(
            self.device
        ):  ###不支持dml,cpu又太慢用不成,拿fcpe顶替
            return self.get_f0(x, f0_up_key, 1, "fcpe")
        # printt("using crepe,device:%s"%self.device)
        f0, pd = torchcrepe.predict(
            x.unsqueeze(0).float(),
            16000,
            160,
            self.f0_min,
            self.f0_max,
            "full",
            batch_size=512,
            # device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用
            device=self.device,
            return_periodicity=True,
        )
        pd = torchcrepe.filter.median(pd, 3)
        f0 = torchcrepe.filter.mean(f0, 3)
        f0[pd < 0.1] = 0
        f0 *= pow(2, f0_up_key / 12)
        return self.get_f0_post(f0)

    def get_f0_rmvpe(self, x, f0_up_key):
        if hasattr(self, "model_rmvpe") == False:
            from infer.lib.rmvpe import RMVPE

            printt("Loading rmvpe model")
            self.model_rmvpe = RMVPE(
                "assets/rmvpe/rmvpe.pt",
                is_half=self.is_half,
                device=self.device,
                use_jit=self.config.use_jit,
            )
        f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
        f0 *= pow(2, f0_up_key / 12)
        return self.get_f0_post(f0)

    def get_f0_fcpe(self, x, f0_up_key):
        if hasattr(self, "model_fcpe") == False:
            from torchfcpe import spawn_bundled_infer_model

            printt("Loading fcpe model")
            if "privateuseone" in str(self.device):
                self.device_fcpe = "cpu"
            else:
                self.device_fcpe = self.device
            self.model_fcpe = spawn_bundled_infer_model(self.device_fcpe)
        f0 = self.model_fcpe.infer(
            x.to(self.device_fcpe).unsqueeze(0).float(),
            sr=16000,
            decoder_mode="local_argmax",
            threshold=0.006,
        )
        f0 *= pow(2, f0_up_key / 12)
        return self.get_f0_post(f0)

    def infer(

        self,

        input_wav: torch.Tensor,

        block_frame_16k,

        skip_head,

        return_length,

        f0method,

    ) -> np.ndarray:
        t1 = ttime()
        with torch.no_grad():
            if self.config.is_half:
                feats = input_wav.half().view(1, -1)
            else:
                feats = input_wav.float().view(1, -1)
            padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
            inputs = {
                "source": feats,
                "padding_mask": padding_mask,
                "output_layer": 9 if self.version == "v1" else 12,
            }
            logits = self.model.extract_features(**inputs)
            feats = (
                self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
            )
            feats = torch.cat((feats, feats[:, -1:, :]), 1)
        t2 = ttime()
        try:
            if hasattr(self, "index") and self.index_rate != 0:
                npy = feats[0][skip_head // 2 :].cpu().numpy().astype("float32")
                score, ix = self.index.search(npy, k=8)
                if (ix >= 0).all():
                    weight = np.square(1 / score)
                    weight /= weight.sum(axis=1, keepdims=True)
                    npy = np.sum(
                        self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1
                    )
                    if self.config.is_half:
                        npy = npy.astype("float16")
                    feats[0][skip_head // 2 :] = (
                        torch.from_numpy(npy).unsqueeze(0).to(self.device)
                        * self.index_rate
                        + (1 - self.index_rate) * feats[0][skip_head // 2 :]
                    )
                else:
                    printt(
                        "Invalid index. You MUST use added_xxxx.index but not trained_xxxx.index!"
                    )
            else:
                printt("Index search FAILED or disabled")
        except:
            traceback.print_exc()
            printt("Index search FAILED")
        t3 = ttime()
        p_len = input_wav.shape[0] // 160
        factor = pow(2, self.formant_shift / 12)
        return_length2 = int(np.ceil(return_length * factor))
        if self.if_f0 == 1:
            f0_extractor_frame = block_frame_16k + 800
            if f0method == "rmvpe":
                f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
            pitch, pitchf = self.get_f0(
                input_wav[-f0_extractor_frame:], self.f0_up_key - self.formant_shift, self.n_cpu, f0method
            )
            shift = block_frame_16k // 160
            self.cache_pitch[:-shift] = self.cache_pitch[shift:].clone()
            self.cache_pitchf[:-shift] = self.cache_pitchf[shift:].clone()
            self.cache_pitch[4 - pitch.shape[0] :] = pitch[3:-1]
            self.cache_pitchf[4 - pitch.shape[0] :] = pitchf[3:-1]
            cache_pitch = self.cache_pitch[None, -p_len:]
            cache_pitchf = self.cache_pitchf[None, -p_len:] * return_length2 / return_length
        t4 = ttime()
        feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
        feats = feats[:, :p_len, :]
        p_len = torch.LongTensor([p_len]).to(self.device)
        sid = torch.LongTensor([0]).to(self.device)
        skip_head = torch.LongTensor([skip_head])
        return_length2 = torch.LongTensor([return_length2])
        return_length = torch.LongTensor([return_length])
        with torch.no_grad():
            if self.if_f0 == 1:
                infered_audio, _, _ = self.net_g.infer(
                    feats,
                    p_len,
                    cache_pitch,
                    cache_pitchf,
                    sid,
                    skip_head,
                    return_length,
                    return_length2,
                )
            else:
                infered_audio, _, _ = self.net_g.infer(
                    feats, p_len, sid, skip_head, return_length, return_length2
                )
        infered_audio = infered_audio.squeeze(1).float()
        upp_res = int(np.floor(factor * self.tgt_sr // 100))
        if upp_res != self.tgt_sr // 100:
            if upp_res not in self.resample_kernel:
                self.resample_kernel[upp_res] = Resample(
                    orig_freq=upp_res,
                    new_freq=self.tgt_sr // 100,
                    dtype=torch.float32,
                ).to(self.device)
            infered_audio = self.resample_kernel[upp_res](
                infered_audio[:, : return_length * upp_res]
            )
        t5 = ttime()
        printt(
            "Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
            t2 - t1,
            t3 - t2,
            t4 - t3,
            t5 - t4,
        )
        return infered_audio.squeeze()