|
|
|
import os |
|
import sys |
|
import json |
|
import re |
|
import time |
|
import librosa |
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
import torchaudio.transforms as tat |
|
import sounddevice as sd |
|
from dotenv import load_dotenv |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
import threading |
|
import uvicorn |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
app = FastAPI() |
|
|
|
class GUIConfig: |
|
def __init__(self) -> None: |
|
self.pth_path: str = "" |
|
self.index_path: str = "" |
|
self.pitch: int = 0 |
|
self.samplerate: int = 40000 |
|
self.block_time: float = 1.0 |
|
self.buffer_num: int = 1 |
|
self.threhold: int = -60 |
|
self.crossfade_time: float = 0.05 |
|
self.extra_time: float = 2.5 |
|
self.I_noise_reduce = False |
|
self.O_noise_reduce = False |
|
self.rms_mix_rate = 0.0 |
|
self.index_rate = 0.3 |
|
self.f0method = "rmvpe" |
|
self.sg_input_device = "" |
|
self.sg_output_device = "" |
|
|
|
class ConfigData(BaseModel): |
|
pth_path: str |
|
index_path: str |
|
sg_input_device: str |
|
sg_output_device: str |
|
threhold: int = -60 |
|
pitch: int = 0 |
|
index_rate: float = 0.3 |
|
rms_mix_rate: float = 0.0 |
|
block_time: float = 0.25 |
|
crossfade_length: float = 0.05 |
|
extra_time: float = 2.5 |
|
n_cpu: int = 4 |
|
I_noise_reduce: bool = False |
|
O_noise_reduce: bool = False |
|
|
|
class AudioAPI: |
|
def __init__(self) -> None: |
|
self.gui_config = GUIConfig() |
|
self.config = None |
|
self.flag_vc = False |
|
self.function = "vc" |
|
self.delay_time = 0 |
|
self.rvc = None |
|
|
|
def load(self): |
|
input_devices, output_devices, _, _ = self.get_devices() |
|
try: |
|
with open("configs/config.json", "r", encoding='utf-8') as j: |
|
data = json.load(j) |
|
data["rmvpe"] = True |
|
if data["sg_input_device"] not in input_devices: |
|
data["sg_input_device"] = input_devices[sd.default.device[0]] |
|
if data["sg_output_device"] not in output_devices: |
|
data["sg_output_device"] = output_devices[sd.default.device[1]] |
|
except Exception as e: |
|
logger.error(f"Failed to load configuration: {e}") |
|
with open("configs/config.json", "w", encoding='utf-8') as j: |
|
data = { |
|
"pth_path": " ", |
|
"index_path": " ", |
|
"sg_input_device": input_devices[sd.default.device[0]], |
|
"sg_output_device": output_devices[sd.default.device[1]], |
|
"threhold": "-60", |
|
"pitch": "0", |
|
"index_rate": "0", |
|
"rms_mix_rate": "0", |
|
"block_time": "0.25", |
|
"crossfade_length": "0.05", |
|
"extra_time": "2.5", |
|
"f0method": "rmvpe", |
|
"use_jit": False, |
|
} |
|
data["rmvpe"] = True |
|
json.dump(data, j, ensure_ascii=False) |
|
return data |
|
|
|
def set_values(self, values): |
|
logger.info(f"Setting values: {values}") |
|
if not values.pth_path.strip(): |
|
raise HTTPException(status_code=400, detail="Please select a .pth file") |
|
if not values.index_path.strip(): |
|
raise HTTPException(status_code=400, detail="Please select an index file") |
|
self.set_devices(values.sg_input_device, values.sg_output_device) |
|
self.config.use_jit = False |
|
self.gui_config.pth_path = values.pth_path |
|
self.gui_config.index_path = values.index_path |
|
self.gui_config.threhold = values.threhold |
|
self.gui_config.pitch = values.pitch |
|
self.gui_config.block_time = values.block_time |
|
self.gui_config.crossfade_time = values.crossfade_length |
|
self.gui_config.extra_time = values.extra_time |
|
self.gui_config.I_noise_reduce = values.I_noise_reduce |
|
self.gui_config.O_noise_reduce = values.O_noise_reduce |
|
self.gui_config.rms_mix_rate = values.rms_mix_rate |
|
self.gui_config.index_rate = values.index_rate |
|
self.gui_config.n_cpu = values.n_cpu |
|
self.gui_config.f0method = "rmvpe" |
|
return True |
|
|
|
def start_vc(self): |
|
torch.cuda.empty_cache() |
|
self.flag_vc = True |
|
self.rvc = rvc_for_realtime.RVC( |
|
self.gui_config.pitch, |
|
self.gui_config.pth_path, |
|
self.gui_config.index_path, |
|
self.gui_config.index_rate, |
|
0, |
|
0, |
|
0, |
|
self.config, |
|
self.rvc if self.rvc else None, |
|
) |
|
self.gui_config.samplerate = self.rvc.tgt_sr |
|
self.zc = self.rvc.tgt_sr // 100 |
|
self.block_frame = ( |
|
int( |
|
np.round( |
|
self.gui_config.block_time |
|
* self.gui_config.samplerate |
|
/ self.zc |
|
) |
|
) |
|
* self.zc |
|
) |
|
self.block_frame_16k = 160 * self.block_frame // self.zc |
|
self.crossfade_frame = ( |
|
int( |
|
np.round( |
|
self.gui_config.crossfade_time |
|
* self.gui_config.samplerate |
|
/ self.zc |
|
) |
|
) |
|
* self.zc |
|
) |
|
self.sola_search_frame = self.zc |
|
self.extra_frame = ( |
|
int( |
|
np.round( |
|
self.gui_config.extra_time |
|
* self.gui_config.samplerate |
|
/ self.zc |
|
) |
|
) |
|
* self.zc |
|
) |
|
self.input_wav = torch.zeros( |
|
self.extra_frame + self.crossfade_frame + self.sola_search_frame + self.block_frame, |
|
device=self.config.device, |
|
dtype=torch.float32, |
|
) |
|
self.input_wav_res = torch.zeros( |
|
160 * self.input_wav.shape[0] // self.zc, |
|
device=self.config.device, |
|
dtype=torch.float32, |
|
) |
|
self.pitch = np.zeros(self.input_wav.shape[0] // self.zc, dtype="int32") |
|
self.pitchf = np.zeros(self.input_wav.shape[0] // self.zc, dtype="float64") |
|
self.sola_buffer = torch.zeros(self.crossfade_frame, device=self.config.device, dtype=torch.float32) |
|
self.nr_buffer = self.sola_buffer.clone() |
|
self.output_buffer = self.input_wav.clone() |
|
self.res_buffer = torch.zeros(2 * self.zc, device=self.config.device, dtype=torch.float32) |
|
self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0] |
|
self.fade_in_window = ( |
|
torch.sin(0.5 * np.pi * torch.linspace(0.0, 1.0, steps=self.crossfade_frame, device=self.config.device, dtype=torch.float32)) ** 2 |
|
) |
|
self.fade_out_window = 1 - self.fade_in_window |
|
self.resampler = tat.Resample( |
|
orig_freq=self.gui_config.samplerate, |
|
new_freq=16000, |
|
dtype=torch.float32, |
|
).to(self.config.device) |
|
self.tg = TorchGate( |
|
sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9 |
|
).to(self.config.device) |
|
thread_vc = threading.Thread(target=self.soundinput) |
|
thread_vc.start() |
|
|
|
def soundinput(self): |
|
channels = 1 if sys.platform == "darwin" else 2 |
|
with sd.Stream( |
|
channels=channels, |
|
callback=self.audio_callback, |
|
blocksize=self.block_frame, |
|
samplerate=self.gui_config.samplerate, |
|
dtype="float32", |
|
) as stream: |
|
global stream_latency |
|
stream_latency = stream.latency[-1] |
|
while self.flag_vc: |
|
time.sleep(self.gui_config.block_time) |
|
logger.info("Audio block passed.") |
|
logger.info("Ending VC") |
|
|
|
def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status): |
|
start_time = time.perf_counter() |
|
indata = librosa.to_mono(indata.T) |
|
if self.gui_config.threhold > -60: |
|
rms = librosa.feature.rms(y=indata, frame_length=4 * self.zc, hop_length=self.zc) |
|
db_threhold = (librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold) |
|
for i in range(db_threhold.shape[0]): |
|
if db_threhold[i]: |
|
indata[i * self.zc : (i + 1) * self.zc] = 0 |
|
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone() |
|
self.input_wav[-self.block_frame :] = torch.from_numpy(indata).to(self.config.device) |
|
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone() |
|
if self.gui_config.I_noise_reduce and self.function == "vc": |
|
input_wav = self.input_wav[-self.crossfade_frame - self.block_frame - 2 * self.zc :] |
|
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0))[0, 2 * self.zc :] |
|
input_wav[: self.crossfade_frame] *= self.fade_in_window |
|
input_wav[: self.crossfade_frame] += self.nr_buffer * self.fade_out_window |
|
self.nr_buffer[:] = input_wav[-self.crossfade_frame :] |
|
input_wav = torch.cat((self.res_buffer[:], input_wav[: self.block_frame])) |
|
self.res_buffer[:] = input_wav[-2 * self.zc :] |
|
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(input_wav)[160:] |
|
else: |
|
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(self.input_wav[-self.block_frame - 2 * self.zc :])[160:] |
|
if self.function == "vc": |
|
f0_extractor_frame = self.block_frame_16k + 800 |
|
if self.gui_config.f0method == "rmvpe": |
|
f0_extractor_frame = (5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160) |
|
infer_wav = self.rvc.infer( |
|
self.input_wav_res, |
|
self.input_wav_res[-f0_extractor_frame:].cpu().numpy(), |
|
self.block_frame_16k, |
|
self.valid_rate, |
|
self.pitch, |
|
self.pitchf, |
|
self.gui_config.f0method, |
|
) |
|
infer_wav = infer_wav[-self.crossfade_frame - self.sola_search_frame - self.block_frame :] |
|
else: |
|
infer_wav = self.input_wav[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].clone() |
|
if (self.gui_config.O_noise_reduce and self.function == "vc") or (self.gui_config.I_noise_reduce and self.function == "im"): |
|
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone() |
|
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :] |
|
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0) |
|
if self.gui_config.rms_mix_rate < 1 and self.function == "vc": |
|
rms1 = librosa.feature.rms(y=self.input_wav_res[-160 * infer_wav.shape[0] // self.zc :].cpu().numpy(), frame_length=640, hop_length=160) |
|
rms1 = torch.from_numpy(rms1).to(self.config.device) |
|
rms1 = F.interpolate(rms1.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True)[0, 0, :-1] |
|
rms2 = librosa.feature.rms(y=infer_wav[:].cpu().numpy(), frame_length=4 * self.zc, hop_length=self.zc) |
|
rms2 = torch.from_numpy(rms2).to(self.config.device) |
|
rms2 = F.interpolate(rms2.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True)[0, 0, :-1] |
|
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3) |
|
infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate)) |
|
conv_input = infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame] |
|
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :]) |
|
cor_den = torch.sqrt(F.conv1d(conv_input**2, torch.ones(1, 1, self.crossfade_frame, device=self.config.device)) + 1e-8) |
|
if sys.platform == "darwin": |
|
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0]) |
|
sola_offset = sola_offset.item() |
|
else: |
|
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) |
|
logger.info(f"sola_offset = {sola_offset}") |
|
infer_wav = infer_wav[sola_offset : sola_offset + self.block_frame + self.crossfade_frame] |
|
infer_wav[: self.crossfade_frame] *= self.fade_in_window |
|
infer_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window |
|
self.sola_buffer[:] = infer_wav[-self.crossfade_frame :] |
|
if sys.platform == "darwin": |
|
outdata[:] = infer_wav[: -self.crossfade_frame].cpu().numpy()[:, np.newaxis] |
|
else: |
|
outdata[:] = infer_wav[: -self.crossfade_frame].repeat(2, 1).t().cpu().numpy() |
|
total_time = time.perf_counter() - start_time |
|
logger.info(f"Infer time: {total_time:.2f}") |
|
|
|
def get_devices(self, update: bool = True): |
|
if update: |
|
sd._terminate() |
|
sd._initialize() |
|
devices = sd.query_devices() |
|
hostapis = sd.query_hostapis() |
|
for hostapi in hostapis: |
|
for device_idx in hostapi["devices"]: |
|
devices[device_idx]["hostapi_name"] = hostapi["name"] |
|
input_devices = [ |
|
f"{d['name']} ({d['hostapi_name']})" |
|
for d in devices |
|
if d["max_input_channels"] > 0 |
|
] |
|
output_devices = [ |
|
f"{d['name']} ({d['hostapi_name']})" |
|
for d in devices |
|
if d["max_output_channels"] > 0 |
|
] |
|
input_devices_indices = [ |
|
d["index"] if "index" in d else d["name"] |
|
for d in devices |
|
if d["max_input_channels"] > 0 |
|
] |
|
output_devices_indices = [ |
|
d["index"] if "index" in d else d["name"] |
|
for d in devices |
|
if d["max_output_channels"] > 0 |
|
] |
|
return ( |
|
input_devices, |
|
output_devices, |
|
input_devices_indices, |
|
output_devices_indices, |
|
) |
|
|
|
def set_devices(self, input_device, output_device): |
|
( |
|
input_devices, |
|
output_devices, |
|
input_device_indices, |
|
output_device_indices, |
|
) = self.get_devices() |
|
logger.debug(f"Available input devices: {input_devices}") |
|
logger.debug(f"Available output devices: {output_devices}") |
|
logger.debug(f"Selected input device: {input_device}") |
|
logger.debug(f"Selected output device: {output_device}") |
|
|
|
if input_device not in input_devices: |
|
logger.error(f"Input device '{input_device}' is not in the list of available devices") |
|
raise HTTPException(status_code=400, detail=f"Input device '{input_device}' is not available") |
|
|
|
if output_device not in output_devices: |
|
logger.error(f"Output device '{output_device}' is not in the list of available devices") |
|
raise HTTPException(status_code=400, detail=f"Output device '{output_device}' is not available") |
|
|
|
sd.default.device[0] = input_device_indices[input_devices.index(input_device)] |
|
sd.default.device[1] = output_device_indices[output_devices.index(output_device)] |
|
logger.info(f"Input device set to {sd.default.device[0]}: {input_device}") |
|
logger.info(f"Output device set to {sd.default.device[1]}: {output_device}") |
|
|
|
audio_api = AudioAPI() |
|
|
|
@app.get("/inputDevices", response_model=list) |
|
def get_input_devices(): |
|
try: |
|
input_devices, _, _, _ = audio_api.get_devices() |
|
return input_devices |
|
except Exception as e: |
|
logger.error(f"Failed to get input devices: {e}") |
|
raise HTTPException(status_code=500, detail="Failed to get input devices") |
|
|
|
@app.get("/outputDevices", response_model=list) |
|
def get_output_devices(): |
|
try: |
|
_, output_devices, _, _ = audio_api.get_devices() |
|
return output_devices |
|
except Exception as e: |
|
logger.error(f"Failed to get output devices: {e}") |
|
raise HTTPException(status_code=500, detail="Failed to get output devices") |
|
|
|
@app.post("/config") |
|
def configure_audio(config_data: ConfigData): |
|
try: |
|
logger.info(f"Configuring audio with data: {config_data}") |
|
if audio_api.set_values(config_data): |
|
settings = config_data.dict() |
|
settings["use_jit"] = False |
|
settings["f0method"] = "rmvpe" |
|
with open("configs/config.json", "w", encoding='utf-8') as j: |
|
json.dump(settings, j, ensure_ascii=False) |
|
logger.info("Configuration set successfully") |
|
return {"message": "Configuration set successfully"} |
|
except HTTPException as e: |
|
logger.error(f"Configuration error: {e.detail}") |
|
raise |
|
except Exception as e: |
|
logger.error(f"Configuration failed: {e}") |
|
raise HTTPException(status_code=400, detail=f"Configuration failed: {e}") |
|
|
|
@app.post("/start") |
|
def start_conversion(): |
|
try: |
|
if not audio_api.flag_vc: |
|
audio_api.start_vc() |
|
return {"message": "Audio conversion started"} |
|
else: |
|
logger.warning("Audio conversion already running") |
|
raise HTTPException(status_code=400, detail="Audio conversion already running") |
|
except HTTPException as e: |
|
logger.error(f"Start conversion error: {e.detail}") |
|
raise |
|
except Exception as e: |
|
logger.error(f"Failed to start conversion: {e}") |
|
raise HTTPException(status_code=500, detail=f"Failed to start conversion: {e}") |
|
|
|
@app.post("/stop") |
|
def stop_conversion(): |
|
try: |
|
if audio_api.flag_vc: |
|
audio_api.flag_vc = False |
|
global stream_latency |
|
stream_latency = -1 |
|
return {"message": "Audio conversion stopped"} |
|
else: |
|
logger.warning("Audio conversion not running") |
|
raise HTTPException(status_code=400, detail="Audio conversion not running") |
|
except HTTPException as e: |
|
logger.error(f"Stop conversion error: {e.detail}") |
|
raise |
|
except Exception as e: |
|
logger.error(f"Failed to stop conversion: {e}") |
|
raise HTTPException(status_code=500, detail=f"Failed to stop conversion: {e}") |
|
|
|
if __name__ == "__main__": |
|
if sys.platform == "win32": |
|
from multiprocessing import freeze_support |
|
freeze_support() |
|
load_dotenv() |
|
os.environ["OMP_NUM_THREADS"] = "4" |
|
if sys.platform == "darwin": |
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" |
|
from tools.torchgate import TorchGate |
|
import tools.rvc_for_realtime as rvc_for_realtime |
|
from configs.config import Config |
|
audio_api.config = Config() |
|
uvicorn.run(app, host="0.0.0.0", port=6242) |
|
|