Upload 39 files
Browse files- requirements.txt +7 -8
- rvc/__init__.py +4 -0
- rvc/f0/__init__.py +10 -0
- rvc/f0/crepe.py +56 -0
- rvc/f0/deepunet.py +217 -0
- rvc/f0/dio.py +31 -0
- rvc/f0/e2e.py +67 -0
- rvc/f0/f0.py +78 -0
- rvc/f0/fcpe.py +53 -0
- rvc/f0/harvest.py +32 -0
- rvc/f0/mel.py +71 -0
- rvc/f0/models.py +16 -0
- rvc/f0/pm.py +39 -0
- rvc/f0/rmvpe.py +162 -0
- rvc/f0/stft.py +194 -0
- rvc/hubert.py +339 -0
- rvc/ipex/__init__.py +10 -0
- rvc/ipex/attention.py +218 -0
- rvc/ipex/gradscaler.py +188 -0
- rvc/ipex/hijacks.py +366 -0
- rvc/ipex/init.py +192 -0
- rvc/jit/__init__.py +1 -0
- rvc/jit/jit.py +78 -0
- rvc/layers/__init__.py +0 -0
- rvc/layers/attentions.py +292 -0
- rvc/layers/discriminators.py +172 -0
- rvc/layers/encoders.py +221 -0
- rvc/layers/generators.py +228 -0
- rvc/layers/norms.py +148 -0
- rvc/layers/nsf.py +216 -0
- rvc/layers/residuals.py +353 -0
- rvc/layers/synthesizers.py +396 -0
- rvc/layers/transforms.py +209 -0
- rvc/layers/utils.py +82 -0
- rvc/onnx/__init__.py +2 -0
- rvc/onnx/exporter.py +52 -0
- rvc/onnx/infer.py +146 -0
- rvc/onnx/synthesizer.py +80 -0
- rvc/synthesizer.py +65 -0
requirements.txt
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
joblib>=1.1.0
|
2 |
-
numba
|
3 |
numpy==1.23.5
|
4 |
scipy
|
5 |
librosa==0.9.1
|
6 |
-
llvmlite
|
7 |
-
fairseq
|
8 |
-
faiss-cpu
|
9 |
-
gradio
|
10 |
Cython
|
11 |
pydub>=0.25.1
|
12 |
soundfile>=0.12.1
|
13 |
-
ffmpeg-python>=0.2.0
|
14 |
tensorboardX
|
15 |
Jinja2>=3.1.2
|
16 |
json5
|
@@ -41,8 +40,8 @@ httpx
|
|
41 |
onnxruntime; sys_platform == 'darwin'
|
42 |
onnxruntime-gpu; sys_platform != 'darwin'
|
43 |
torchcrepe==0.0.20
|
44 |
-
fastapi
|
45 |
torchfcpe
|
46 |
-
ffmpy==0.3.1
|
47 |
python-dotenv>=1.0.0
|
48 |
av
|
|
|
|
1 |
joblib>=1.1.0
|
2 |
+
numba
|
3 |
numpy==1.23.5
|
4 |
scipy
|
5 |
librosa==0.9.1
|
6 |
+
llvmlite
|
7 |
+
fairseq
|
8 |
+
faiss-cpu
|
9 |
+
gradio
|
10 |
Cython
|
11 |
pydub>=0.25.1
|
12 |
soundfile>=0.12.1
|
|
|
13 |
tensorboardX
|
14 |
Jinja2>=3.1.2
|
15 |
json5
|
|
|
40 |
onnxruntime; sys_platform == 'darwin'
|
41 |
onnxruntime-gpu; sys_platform != 'darwin'
|
42 |
torchcrepe==0.0.20
|
43 |
+
fastapi
|
44 |
torchfcpe
|
|
|
45 |
python-dotenv>=1.0.0
|
46 |
av
|
47 |
+
pybase16384
|
rvc/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import ipex
|
2 |
+
import sys
|
3 |
+
|
4 |
+
del sys.modules["rvc.ipex"]
|
rvc/f0/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .f0 import F0Predictor
|
2 |
+
|
3 |
+
from .crepe import CRePE
|
4 |
+
from .dio import Dio
|
5 |
+
from .fcpe import FCPE
|
6 |
+
from .harvest import Harvest
|
7 |
+
from .pm import PM
|
8 |
+
from .rmvpe import RMVPE
|
9 |
+
|
10 |
+
__all__ = ["F0Predictor", "CRePE", "Dio", "FCPE", "Harvest", "PM", "RMVPE"]
|
rvc/f0/crepe.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torchcrepe
|
6 |
+
|
7 |
+
from .f0 import F0Predictor
|
8 |
+
|
9 |
+
|
10 |
+
class CRePE(F0Predictor):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
hop_length=512,
|
14 |
+
f0_min=50,
|
15 |
+
f0_max=1100,
|
16 |
+
sampling_rate=44100,
|
17 |
+
device="cpu",
|
18 |
+
):
|
19 |
+
if "privateuseone" in str(device):
|
20 |
+
device = "cpu"
|
21 |
+
super().__init__(
|
22 |
+
hop_length,
|
23 |
+
f0_min,
|
24 |
+
f0_max,
|
25 |
+
sampling_rate,
|
26 |
+
device,
|
27 |
+
)
|
28 |
+
|
29 |
+
def compute_f0(
|
30 |
+
self,
|
31 |
+
wav: np.ndarray,
|
32 |
+
p_len: Optional[int] = None,
|
33 |
+
filter_radius: Optional[Union[int, float]] = None,
|
34 |
+
):
|
35 |
+
if p_len is None:
|
36 |
+
p_len = wav.shape[0] // self.hop_length
|
37 |
+
if not torch.is_tensor(wav):
|
38 |
+
wav = torch.from_numpy(wav)
|
39 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
40 |
+
batch_size = 512
|
41 |
+
# Compute pitch using device 'device'
|
42 |
+
f0, pd = torchcrepe.predict(
|
43 |
+
wav.float().to(self.device).unsqueeze(dim=0),
|
44 |
+
self.sampling_rate,
|
45 |
+
self.hop_length,
|
46 |
+
self.f0_min,
|
47 |
+
self.f0_max,
|
48 |
+
batch_size=batch_size,
|
49 |
+
device=self.device,
|
50 |
+
return_periodicity=True,
|
51 |
+
)
|
52 |
+
pd = torchcrepe.filter.median(pd, 3)
|
53 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
54 |
+
f0[pd < 0.1] = 0
|
55 |
+
f0 = f0[0].cpu().numpy()
|
56 |
+
return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
|
rvc/f0/deepunet.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class ConvBlockRes(nn.Module):
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
in_channels: int,
|
11 |
+
out_channels: int,
|
12 |
+
momentum: float = 0.01,
|
13 |
+
):
|
14 |
+
super(ConvBlockRes, self).__init__()
|
15 |
+
self.conv = nn.Sequential(
|
16 |
+
nn.Conv2d(
|
17 |
+
in_channels=in_channels,
|
18 |
+
out_channels=out_channels,
|
19 |
+
kernel_size=(3, 3),
|
20 |
+
stride=(1, 1),
|
21 |
+
padding=(1, 1),
|
22 |
+
bias=False,
|
23 |
+
),
|
24 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
25 |
+
nn.ReLU(),
|
26 |
+
nn.Conv2d(
|
27 |
+
in_channels=out_channels,
|
28 |
+
out_channels=out_channels,
|
29 |
+
kernel_size=(3, 3),
|
30 |
+
stride=(1, 1),
|
31 |
+
padding=(1, 1),
|
32 |
+
bias=False,
|
33 |
+
),
|
34 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
35 |
+
nn.ReLU(),
|
36 |
+
)
|
37 |
+
# self.shortcut:Optional[nn.Module] = None
|
38 |
+
if in_channels != out_channels:
|
39 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
40 |
+
|
41 |
+
def forward(self, x: torch.Tensor):
|
42 |
+
if not hasattr(self, "shortcut"):
|
43 |
+
return self.conv(x) + x
|
44 |
+
else:
|
45 |
+
return self.conv(x) + self.shortcut(x)
|
46 |
+
|
47 |
+
|
48 |
+
class Encoder(nn.Module):
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
in_channels: int,
|
52 |
+
in_size: int,
|
53 |
+
n_encoders: int,
|
54 |
+
kernel_size: Tuple[int, int],
|
55 |
+
n_blocks: int,
|
56 |
+
out_channels=16,
|
57 |
+
momentum=0.01,
|
58 |
+
):
|
59 |
+
super(Encoder, self).__init__()
|
60 |
+
self.n_encoders = n_encoders
|
61 |
+
|
62 |
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
63 |
+
self.layers = nn.ModuleList()
|
64 |
+
for _ in range(self.n_encoders):
|
65 |
+
self.layers.append(
|
66 |
+
ResEncoderBlock(
|
67 |
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
68 |
+
)
|
69 |
+
)
|
70 |
+
in_channels = out_channels
|
71 |
+
out_channels *= 2
|
72 |
+
in_size //= 2
|
73 |
+
self.out_size = in_size
|
74 |
+
self.out_channel = out_channels
|
75 |
+
|
76 |
+
def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
77 |
+
return super().__call__(x)
|
78 |
+
|
79 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
80 |
+
concat_tensors: List[torch.Tensor] = []
|
81 |
+
x = self.bn(x)
|
82 |
+
for layer in self.layers:
|
83 |
+
t, x = layer(x)
|
84 |
+
concat_tensors.append(t)
|
85 |
+
return x, concat_tensors
|
86 |
+
|
87 |
+
|
88 |
+
class ResEncoderBlock(nn.Module):
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
in_channels: int,
|
92 |
+
out_channels: int,
|
93 |
+
kernel_size: Tuple[int, int],
|
94 |
+
n_blocks=1,
|
95 |
+
momentum=0.01,
|
96 |
+
):
|
97 |
+
super(ResEncoderBlock, self).__init__()
|
98 |
+
self.n_blocks = n_blocks
|
99 |
+
self.kernel_size = kernel_size
|
100 |
+
|
101 |
+
self.conv = nn.ModuleList()
|
102 |
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
103 |
+
for _ in range(n_blocks - 1):
|
104 |
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
105 |
+
|
106 |
+
if self.kernel_size is not None:
|
107 |
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
108 |
+
|
109 |
+
def forward(
|
110 |
+
self,
|
111 |
+
x: torch.Tensor,
|
112 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
113 |
+
for conv in self.conv:
|
114 |
+
x = conv(x)
|
115 |
+
if self.kernel_size is not None:
|
116 |
+
return x, self.pool(x)
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
class Intermediate(nn.Module):
|
121 |
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
122 |
+
super(Intermediate, self).__init__()
|
123 |
+
|
124 |
+
self.layers = nn.ModuleList()
|
125 |
+
self.layers.append(
|
126 |
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
127 |
+
)
|
128 |
+
for _ in range(n_inters - 1):
|
129 |
+
self.layers.append(
|
130 |
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
131 |
+
)
|
132 |
+
|
133 |
+
def forward(self, x):
|
134 |
+
for layer in self.layers:
|
135 |
+
x = layer(x)
|
136 |
+
return x
|
137 |
+
|
138 |
+
|
139 |
+
class ResDecoderBlock(nn.Module):
|
140 |
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
141 |
+
super(ResDecoderBlock, self).__init__()
|
142 |
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
143 |
+
|
144 |
+
self.conv1 = nn.Sequential(
|
145 |
+
nn.ConvTranspose2d(
|
146 |
+
in_channels=in_channels,
|
147 |
+
out_channels=out_channels,
|
148 |
+
kernel_size=(3, 3),
|
149 |
+
stride=stride,
|
150 |
+
padding=(1, 1),
|
151 |
+
output_padding=out_padding,
|
152 |
+
bias=False,
|
153 |
+
),
|
154 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
155 |
+
nn.ReLU(),
|
156 |
+
)
|
157 |
+
self.conv2 = nn.ModuleList()
|
158 |
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
159 |
+
for _ in range(n_blocks - 1):
|
160 |
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
161 |
+
|
162 |
+
def forward(self, x, concat_tensor):
|
163 |
+
x = self.conv1(x)
|
164 |
+
x = torch.cat((x, concat_tensor), dim=1)
|
165 |
+
for conv2 in self.conv2:
|
166 |
+
x = conv2(x)
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
class Decoder(nn.Module):
|
171 |
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
172 |
+
super(Decoder, self).__init__()
|
173 |
+
|
174 |
+
self.layers = nn.ModuleList()
|
175 |
+
self.n_decoders = n_decoders
|
176 |
+
for _ in range(self.n_decoders):
|
177 |
+
out_channels = in_channels // 2
|
178 |
+
self.layers.append(
|
179 |
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
180 |
+
)
|
181 |
+
in_channels = out_channels
|
182 |
+
|
183 |
+
def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]):
|
184 |
+
for i, layer in enumerate(self.layers):
|
185 |
+
x = layer(x, concat_tensors[-1 - i])
|
186 |
+
return x
|
187 |
+
|
188 |
+
|
189 |
+
class DeepUnet(nn.Module):
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
kernel_size: Tuple[int, int],
|
193 |
+
n_blocks: int,
|
194 |
+
en_de_layers=5,
|
195 |
+
inter_layers=4,
|
196 |
+
in_channels=1,
|
197 |
+
en_out_channels=16,
|
198 |
+
):
|
199 |
+
super(DeepUnet, self).__init__()
|
200 |
+
self.encoder = Encoder(
|
201 |
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
202 |
+
)
|
203 |
+
self.intermediate = Intermediate(
|
204 |
+
self.encoder.out_channel // 2,
|
205 |
+
self.encoder.out_channel,
|
206 |
+
inter_layers,
|
207 |
+
n_blocks,
|
208 |
+
)
|
209 |
+
self.decoder = Decoder(
|
210 |
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
211 |
+
)
|
212 |
+
|
213 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
214 |
+
x, concat_tensors = self.encoder(x)
|
215 |
+
x = self.intermediate(x)
|
216 |
+
x = self.decoder(x, concat_tensors)
|
217 |
+
return x
|
rvc/f0/dio.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pyworld
|
5 |
+
|
6 |
+
from .f0 import F0Predictor
|
7 |
+
|
8 |
+
|
9 |
+
class Dio(F0Predictor):
|
10 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
11 |
+
super().__init__(hop_length, f0_min, f0_max, sampling_rate)
|
12 |
+
|
13 |
+
def compute_f0(
|
14 |
+
self,
|
15 |
+
wav: np.ndarray,
|
16 |
+
p_len: Optional[int] = None,
|
17 |
+
filter_radius: Optional[Union[int, float]] = None,
|
18 |
+
):
|
19 |
+
if p_len is None:
|
20 |
+
p_len = wav.shape[0] // self.hop_length
|
21 |
+
f0, t = pyworld.dio(
|
22 |
+
wav.astype(np.double),
|
23 |
+
fs=self.sampling_rate,
|
24 |
+
f0_floor=self.f0_min,
|
25 |
+
f0_ceil=self.f0_max,
|
26 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
27 |
+
)
|
28 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
29 |
+
for index, pitch in enumerate(f0):
|
30 |
+
f0[index] = round(pitch, 1)
|
31 |
+
return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
|
rvc/f0/e2e.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from .deepunet import DeepUnet
|
6 |
+
|
7 |
+
|
8 |
+
class E2E(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
n_blocks: int,
|
12 |
+
n_gru: int,
|
13 |
+
kernel_size: Tuple[int, int],
|
14 |
+
en_de_layers=5,
|
15 |
+
inter_layers=4,
|
16 |
+
in_channels=1,
|
17 |
+
en_out_channels=16,
|
18 |
+
):
|
19 |
+
super(E2E, self).__init__()
|
20 |
+
|
21 |
+
self.unet = DeepUnet(
|
22 |
+
kernel_size,
|
23 |
+
n_blocks,
|
24 |
+
en_de_layers,
|
25 |
+
inter_layers,
|
26 |
+
in_channels,
|
27 |
+
en_out_channels,
|
28 |
+
)
|
29 |
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
30 |
+
if n_gru:
|
31 |
+
self.fc = nn.Sequential(
|
32 |
+
self.BiGRU(3 * 128, 256, n_gru),
|
33 |
+
nn.Linear(512, 360),
|
34 |
+
nn.Dropout(0.25),
|
35 |
+
nn.Sigmoid(),
|
36 |
+
)
|
37 |
+
else:
|
38 |
+
self.fc = nn.Sequential(
|
39 |
+
nn.Linear(3 * nn.N_MELS, nn.N_CLASS),
|
40 |
+
nn.Dropout(0.25),
|
41 |
+
nn.Sigmoid(),
|
42 |
+
)
|
43 |
+
|
44 |
+
def forward(self, mel):
|
45 |
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
46 |
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
47 |
+
x = self.fc(x)
|
48 |
+
return x
|
49 |
+
|
50 |
+
class BiGRU(nn.Module):
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
input_features: int,
|
54 |
+
hidden_features: int,
|
55 |
+
num_layers: int,
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
self.gru = nn.GRU(
|
59 |
+
input_features,
|
60 |
+
hidden_features,
|
61 |
+
num_layers=num_layers,
|
62 |
+
batch_first=True,
|
63 |
+
bidirectional=True,
|
64 |
+
)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
return self.gru(x)[0]
|
rvc/f0/f0.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
class F0Predictor(object):
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
hop_length=512,
|
11 |
+
f0_min=50,
|
12 |
+
f0_max=1100,
|
13 |
+
sampling_rate=44100,
|
14 |
+
device: Optional[str] = None,
|
15 |
+
):
|
16 |
+
self.hop_length = hop_length
|
17 |
+
self.f0_min = f0_min
|
18 |
+
self.f0_max = f0_max
|
19 |
+
self.sampling_rate = sampling_rate
|
20 |
+
if device is None:
|
21 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
22 |
+
self.device = device
|
23 |
+
|
24 |
+
def compute_f0(
|
25 |
+
self,
|
26 |
+
wav: np.ndarray,
|
27 |
+
p_len: Optional[int] = None,
|
28 |
+
filter_radius: Optional[Union[int, float]] = None,
|
29 |
+
): ...
|
30 |
+
|
31 |
+
def _interpolate_f0(self, f0: np.ndarray):
|
32 |
+
"""
|
33 |
+
对F0进行插值处理
|
34 |
+
"""
|
35 |
+
|
36 |
+
data = np.reshape(f0, (f0.size, 1))
|
37 |
+
|
38 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
39 |
+
vuv_vector[data > 0.0] = 1.0
|
40 |
+
vuv_vector[data <= 0.0] = 0.0
|
41 |
+
|
42 |
+
ip_data = data
|
43 |
+
|
44 |
+
frame_number = data.size
|
45 |
+
last_value = 0.0
|
46 |
+
for i in range(frame_number):
|
47 |
+
if data[i] <= 0.0:
|
48 |
+
j = i + 1
|
49 |
+
for j in range(i + 1, frame_number):
|
50 |
+
if data[j] > 0.0:
|
51 |
+
break
|
52 |
+
if j < frame_number - 1:
|
53 |
+
if last_value > 0.0:
|
54 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
55 |
+
for k in range(i, j):
|
56 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
57 |
+
else:
|
58 |
+
for k in range(i, j):
|
59 |
+
ip_data[k] = data[j]
|
60 |
+
else:
|
61 |
+
for k in range(i, frame_number):
|
62 |
+
ip_data[k] = last_value
|
63 |
+
else:
|
64 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
65 |
+
last_value = data[i]
|
66 |
+
|
67 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
68 |
+
|
69 |
+
def _resize_f0(self, x: np.ndarray, target_len: int):
|
70 |
+
source = np.array(x)
|
71 |
+
source[source < 0.001] = np.nan
|
72 |
+
target = np.interp(
|
73 |
+
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
74 |
+
np.arange(0, len(source)),
|
75 |
+
source,
|
76 |
+
)
|
77 |
+
res = np.nan_to_num(target)
|
78 |
+
return res
|
rvc/f0/fcpe.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from .f0 import F0Predictor
|
7 |
+
|
8 |
+
|
9 |
+
class FCPE(F0Predictor):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
hop_length=512,
|
13 |
+
f0_min=50,
|
14 |
+
f0_max=1100,
|
15 |
+
sampling_rate=44100,
|
16 |
+
device="cpu",
|
17 |
+
):
|
18 |
+
super().__init__(
|
19 |
+
hop_length,
|
20 |
+
f0_min,
|
21 |
+
f0_max,
|
22 |
+
sampling_rate,
|
23 |
+
device,
|
24 |
+
)
|
25 |
+
|
26 |
+
from torchfcpe import (
|
27 |
+
spawn_bundled_infer_model,
|
28 |
+
) # must be imported at here, or it will cause fairseq crash on training
|
29 |
+
|
30 |
+
self.model = spawn_bundled_infer_model(self.device)
|
31 |
+
|
32 |
+
def compute_f0(
|
33 |
+
self,
|
34 |
+
wav: np.ndarray,
|
35 |
+
p_len: Optional[int] = None,
|
36 |
+
filter_radius: Optional[Union[int, float]] = 0.006,
|
37 |
+
):
|
38 |
+
if p_len is None:
|
39 |
+
p_len = wav.shape[0] // self.hop_length
|
40 |
+
if not torch.is_tensor(wav):
|
41 |
+
wav = torch.from_numpy(wav)
|
42 |
+
f0 = (
|
43 |
+
self.model.infer(
|
44 |
+
wav.float().to(self.device).unsqueeze(0),
|
45 |
+
sr=self.sampling_rate,
|
46 |
+
decoder_mode="local_argmax",
|
47 |
+
threshold=filter_radius,
|
48 |
+
)
|
49 |
+
.squeeze()
|
50 |
+
.cpu()
|
51 |
+
.numpy()
|
52 |
+
)
|
53 |
+
return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
|
rvc/f0/harvest.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pyworld
|
5 |
+
from scipy import signal
|
6 |
+
|
7 |
+
from .f0 import F0Predictor
|
8 |
+
|
9 |
+
|
10 |
+
class Harvest(F0Predictor):
|
11 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
12 |
+
super().__init__(hop_length, f0_min, f0_max, sampling_rate)
|
13 |
+
|
14 |
+
def compute_f0(
|
15 |
+
self,
|
16 |
+
wav: np.ndarray,
|
17 |
+
p_len: Optional[int] = None,
|
18 |
+
filter_radius: Optional[Union[int, float]] = None,
|
19 |
+
):
|
20 |
+
if p_len is None:
|
21 |
+
p_len = wav.shape[0] // self.hop_length
|
22 |
+
f0, t = pyworld.harvest(
|
23 |
+
wav.astype(np.double),
|
24 |
+
fs=self.sampling_rate,
|
25 |
+
f0_ceil=self.f0_max,
|
26 |
+
f0_floor=self.f0_min,
|
27 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
28 |
+
)
|
29 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
30 |
+
if filter_radius is not None and filter_radius > 2:
|
31 |
+
f0 = signal.medfilt(f0, filter_radius)
|
32 |
+
return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
|
rvc/f0/mel.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from librosa.filters import mel
|
6 |
+
|
7 |
+
from .stft import STFT
|
8 |
+
|
9 |
+
|
10 |
+
class MelSpectrogram(torch.nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
is_half: bool,
|
14 |
+
n_mel_channels: int,
|
15 |
+
sampling_rate: int,
|
16 |
+
win_length: int,
|
17 |
+
hop_length: int,
|
18 |
+
n_fft: Optional[int] = None,
|
19 |
+
mel_fmin: int = 0,
|
20 |
+
mel_fmax: int = None,
|
21 |
+
clamp: float = 1e-5,
|
22 |
+
device=torch.device("cpu"),
|
23 |
+
):
|
24 |
+
super().__init__()
|
25 |
+
if n_fft is None:
|
26 |
+
n_fft = win_length
|
27 |
+
mel_basis = mel(
|
28 |
+
sr=sampling_rate,
|
29 |
+
n_fft=n_fft,
|
30 |
+
n_mels=n_mel_channels,
|
31 |
+
fmin=mel_fmin,
|
32 |
+
fmax=mel_fmax,
|
33 |
+
htk=True,
|
34 |
+
)
|
35 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
36 |
+
self.register_buffer("mel_basis", mel_basis)
|
37 |
+
self.n_fft = n_fft
|
38 |
+
self.hop_length = hop_length
|
39 |
+
self.win_length = win_length
|
40 |
+
self.clamp = clamp
|
41 |
+
self.is_half = is_half
|
42 |
+
|
43 |
+
self.stft = STFT(
|
44 |
+
filter_length=n_fft,
|
45 |
+
hop_length=hop_length,
|
46 |
+
win_length=win_length,
|
47 |
+
window="hann",
|
48 |
+
use_torch_stft="privateuseone" not in str(device),
|
49 |
+
).to(device)
|
50 |
+
|
51 |
+
def forward(
|
52 |
+
self,
|
53 |
+
audio: torch.Tensor,
|
54 |
+
keyshift=0,
|
55 |
+
speed=1,
|
56 |
+
center=True,
|
57 |
+
):
|
58 |
+
factor = 2 ** (keyshift / 12)
|
59 |
+
win_length_new = int(np.round(self.win_length * factor))
|
60 |
+
magnitude = self.stft(audio, keyshift, speed, center)
|
61 |
+
if keyshift != 0:
|
62 |
+
size = self.n_fft // 2 + 1
|
63 |
+
resize = magnitude.size(1)
|
64 |
+
if resize < size:
|
65 |
+
magnitude = torch.nn.functional.pad(magnitude, (0, 0, 0, size - resize))
|
66 |
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
67 |
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
68 |
+
if self.is_half:
|
69 |
+
mel_output = mel_output.half()
|
70 |
+
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
71 |
+
return log_mel_spec
|
rvc/f0/models.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def get_rmvpe(
|
5 |
+
model_path="assets/rmvpe/rmvpe.pt", device=torch.device("cpu"), is_half=False
|
6 |
+
):
|
7 |
+
from rvc.f0.e2e import E2E
|
8 |
+
|
9 |
+
model = E2E(4, 1, (2, 2))
|
10 |
+
ckpt = torch.load(model_path, map_location=device)
|
11 |
+
model.load_state_dict(ckpt)
|
12 |
+
model.eval()
|
13 |
+
if is_half:
|
14 |
+
model = model.half()
|
15 |
+
model = model.to(device)
|
16 |
+
return model
|
rvc/f0/pm.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Optional
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import parselmouth
|
5 |
+
|
6 |
+
from .f0 import F0Predictor
|
7 |
+
|
8 |
+
|
9 |
+
class PM(F0Predictor):
|
10 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
11 |
+
super().__init__(hop_length, f0_min, f0_max, sampling_rate)
|
12 |
+
|
13 |
+
def compute_f0(
|
14 |
+
self,
|
15 |
+
wav: np.ndarray,
|
16 |
+
p_len: Optional[int] = None,
|
17 |
+
filter_radius: Optional[int] = None,
|
18 |
+
):
|
19 |
+
x = wav
|
20 |
+
if p_len is None:
|
21 |
+
p_len = x.shape[0] // self.hop_length
|
22 |
+
else:
|
23 |
+
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
24 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
25 |
+
f0 = (
|
26 |
+
parselmouth.Sound(x, self.sampling_rate)
|
27 |
+
.to_pitch_ac(
|
28 |
+
time_step=time_step / 1000,
|
29 |
+
voicing_threshold=0.6,
|
30 |
+
pitch_floor=self.f0_min,
|
31 |
+
pitch_ceiling=self.f0_max,
|
32 |
+
)
|
33 |
+
.selected_array["frequency"]
|
34 |
+
)
|
35 |
+
|
36 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
37 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
38 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
39 |
+
return self._interpolate_f0(f0)[0]
|
rvc/f0/rmvpe.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
import os
|
3 |
+
from typing import Any, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from rvc.jit import load_inputs, get_jit_model, export_jit_model, save_pickle
|
10 |
+
|
11 |
+
from .mel import MelSpectrogram
|
12 |
+
from .f0 import F0Predictor
|
13 |
+
from .models import get_rmvpe
|
14 |
+
|
15 |
+
|
16 |
+
def rmvpe_jit_export(
|
17 |
+
model_path: str,
|
18 |
+
mode: str = "script",
|
19 |
+
inputs_path: str = None,
|
20 |
+
save_path: str = None,
|
21 |
+
device=torch.device("cpu"),
|
22 |
+
is_half=False,
|
23 |
+
):
|
24 |
+
if not save_path:
|
25 |
+
save_path = model_path.rstrip(".pth")
|
26 |
+
save_path += ".half.jit" if is_half else ".jit"
|
27 |
+
if "cuda" in str(device) and ":" not in str(device):
|
28 |
+
device = torch.device("cuda:0")
|
29 |
+
|
30 |
+
model = get_rmvpe(model_path, device, is_half)
|
31 |
+
inputs = None
|
32 |
+
if mode == "trace":
|
33 |
+
inputs = load_inputs(inputs_path, device, is_half)
|
34 |
+
ckpt = export_jit_model(model, mode, inputs, device, is_half)
|
35 |
+
ckpt["device"] = str(device)
|
36 |
+
save_pickle(ckpt, save_path)
|
37 |
+
return ckpt
|
38 |
+
|
39 |
+
|
40 |
+
class RMVPE(F0Predictor):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
model_path: str,
|
44 |
+
is_half: bool,
|
45 |
+
device: str,
|
46 |
+
use_jit=False,
|
47 |
+
):
|
48 |
+
hop_length = 160
|
49 |
+
f0_min = 30
|
50 |
+
f0_max = 8000
|
51 |
+
sampling_rate = 16000
|
52 |
+
|
53 |
+
super().__init__(
|
54 |
+
hop_length,
|
55 |
+
f0_min,
|
56 |
+
f0_max,
|
57 |
+
sampling_rate,
|
58 |
+
device,
|
59 |
+
)
|
60 |
+
|
61 |
+
self.is_half = is_half
|
62 |
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
63 |
+
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
64 |
+
|
65 |
+
self.mel_extractor = MelSpectrogram(
|
66 |
+
is_half=is_half,
|
67 |
+
n_mel_channels=128,
|
68 |
+
sampling_rate=sampling_rate,
|
69 |
+
win_length=1024,
|
70 |
+
hop_length=hop_length,
|
71 |
+
mel_fmin=f0_min,
|
72 |
+
mel_fmax=f0_max,
|
73 |
+
device=self.device,
|
74 |
+
).to(self.device)
|
75 |
+
|
76 |
+
if "privateuseone" in str(self.device):
|
77 |
+
import onnxruntime as ort
|
78 |
+
|
79 |
+
self.model = ort.InferenceSession(
|
80 |
+
"%s/rmvpe.onnx" % os.environ["rmvpe_root"],
|
81 |
+
providers=["DmlExecutionProvider"],
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
|
85 |
+
def rmvpe_jit_model():
|
86 |
+
ckpt = get_jit_model(model_path, is_half, self.device, rmvpe_jit_export)
|
87 |
+
model = torch.jit.load(BytesIO(ckpt["model"]), map_location=self.device)
|
88 |
+
model = model.to(self.device)
|
89 |
+
return model
|
90 |
+
|
91 |
+
if use_jit and not (is_half and "cpu" in str(self.device)):
|
92 |
+
self.model = rmvpe_jit_model()
|
93 |
+
else:
|
94 |
+
self.model = get_rmvpe(model_path, self.device, is_half)
|
95 |
+
|
96 |
+
def compute_f0(
|
97 |
+
self,
|
98 |
+
wav: np.ndarray,
|
99 |
+
p_len: Optional[int] = None,
|
100 |
+
filter_radius: Optional[Union[int, float]] = None,
|
101 |
+
):
|
102 |
+
if p_len is None:
|
103 |
+
p_len = wav.shape[0] // self.hop_length
|
104 |
+
if not torch.is_tensor(wav):
|
105 |
+
wav = torch.from_numpy(wav)
|
106 |
+
mel = self.mel_extractor(wav.float().to(self.device).unsqueeze(0), center=True)
|
107 |
+
hidden = self._mel2hidden(mel)
|
108 |
+
if "privateuseone" not in str(self.device):
|
109 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
110 |
+
else:
|
111 |
+
hidden = hidden[0]
|
112 |
+
if self.is_half == True:
|
113 |
+
hidden = hidden.astype("float32")
|
114 |
+
|
115 |
+
f0 = self._decode(hidden, thred=filter_radius)
|
116 |
+
|
117 |
+
return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
|
118 |
+
|
119 |
+
def _to_local_average_cents(self, salience, threshold=0.05):
|
120 |
+
center = np.argmax(salience, axis=1) # 帧长#index
|
121 |
+
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
122 |
+
center += 4
|
123 |
+
todo_salience = []
|
124 |
+
todo_cents_mapping = []
|
125 |
+
starts = center - 4
|
126 |
+
ends = center + 5
|
127 |
+
for idx in range(salience.shape[0]):
|
128 |
+
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
129 |
+
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
130 |
+
todo_salience = np.array(todo_salience) # 帧长,9
|
131 |
+
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
132 |
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
133 |
+
weight_sum = np.sum(todo_salience, 1) # 帧长
|
134 |
+
devided = product_sum / weight_sum # 帧长
|
135 |
+
maxx = np.max(salience, axis=1) # 帧长
|
136 |
+
devided[maxx <= threshold] = 0
|
137 |
+
return devided
|
138 |
+
|
139 |
+
def _mel2hidden(self, mel):
|
140 |
+
with torch.no_grad():
|
141 |
+
n_frames = mel.shape[-1]
|
142 |
+
n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
|
143 |
+
if n_pad > 0:
|
144 |
+
mel = F.pad(mel, (0, n_pad), mode="constant")
|
145 |
+
if "privateuseone" in str(self.device):
|
146 |
+
onnx_input_name = self.model.get_inputs()[0].name
|
147 |
+
onnx_outputs_names = self.model.get_outputs()[0].name
|
148 |
+
hidden = self.model.run(
|
149 |
+
[onnx_outputs_names],
|
150 |
+
input_feed={onnx_input_name: mel.cpu().numpy()},
|
151 |
+
)[0]
|
152 |
+
else:
|
153 |
+
mel = mel.half() if self.is_half else mel.float()
|
154 |
+
hidden = self.model(mel)
|
155 |
+
return hidden[:, :n_frames]
|
156 |
+
|
157 |
+
def _decode(self, hidden, thred=0.03):
|
158 |
+
cents_pred = self._to_local_average_cents(hidden, threshold=thred)
|
159 |
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
160 |
+
f0[f0 == 10] = 0
|
161 |
+
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
162 |
+
return f0
|
rvc/f0/stft.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from librosa.util import pad_center
|
7 |
+
from scipy.signal import get_window
|
8 |
+
|
9 |
+
|
10 |
+
class STFT(torch.nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
filter_length=1024,
|
14 |
+
hop_length=512,
|
15 |
+
win_length: Optional[int] = None,
|
16 |
+
window="hann",
|
17 |
+
use_torch_stft=True,
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
This module implements an STFT using 1D convolution and 1D transpose convolutions.
|
21 |
+
This is a bit tricky so there are some cases that probably won't work as working
|
22 |
+
out the same sizes before and after in all overlap add setups is tough. Right now,
|
23 |
+
this code should work with hop lengths that are half the filter length (50% overlap
|
24 |
+
between frames).
|
25 |
+
|
26 |
+
Keyword Arguments:
|
27 |
+
filter_length {int} -- Length of filters used (default: {1024})
|
28 |
+
hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
|
29 |
+
win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
|
30 |
+
equals the filter length). (default: {None})
|
31 |
+
window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
|
32 |
+
(default: {'hann'})
|
33 |
+
"""
|
34 |
+
super(STFT, self).__init__()
|
35 |
+
self.filter_length = filter_length
|
36 |
+
self.hop_length = hop_length
|
37 |
+
self.pad_amount = int(self.filter_length / 2)
|
38 |
+
self.win_length = win_length
|
39 |
+
self.hann_window = {}
|
40 |
+
self.use_torch_stft = use_torch_stft
|
41 |
+
|
42 |
+
if use_torch_stft:
|
43 |
+
return
|
44 |
+
|
45 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
46 |
+
|
47 |
+
cutoff = int((self.filter_length / 2 + 1))
|
48 |
+
fourier_basis = np.vstack(
|
49 |
+
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
50 |
+
)
|
51 |
+
forward_basis = torch.FloatTensor(fourier_basis)
|
52 |
+
inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis))
|
53 |
+
|
54 |
+
if win_length is None or not win_length:
|
55 |
+
win_length = filter_length
|
56 |
+
assert filter_length >= win_length
|
57 |
+
|
58 |
+
# get window and zero center pad it to filter_length
|
59 |
+
fft_window = get_window(window, win_length, fftbins=True)
|
60 |
+
fft_window = pad_center(fft_window, size=filter_length)
|
61 |
+
fft_window = torch.from_numpy(fft_window).float()
|
62 |
+
|
63 |
+
# window the bases
|
64 |
+
forward_basis *= fft_window
|
65 |
+
inverse_basis = (inverse_basis.T * fft_window).T
|
66 |
+
|
67 |
+
self.register_buffer("forward_basis", forward_basis.float())
|
68 |
+
self.register_buffer("inverse_basis", inverse_basis.float())
|
69 |
+
self.register_buffer("fft_window", fft_window.float())
|
70 |
+
|
71 |
+
def __call__(
|
72 |
+
self,
|
73 |
+
input_data: torch.Tensor,
|
74 |
+
keyshift: int = 0,
|
75 |
+
speed: int = 1,
|
76 |
+
center: bool = True,
|
77 |
+
) -> torch.Tensor:
|
78 |
+
return super().__call__(input_data, keyshift, speed, center)
|
79 |
+
|
80 |
+
def transform(
|
81 |
+
self,
|
82 |
+
input_data: torch.Tensor,
|
83 |
+
return_phase=False,
|
84 |
+
) -> Tuple[Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]]:
|
85 |
+
"""Take input data (audio) to STFT domain.
|
86 |
+
|
87 |
+
Arguments:
|
88 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
92 |
+
num_frequencies, num_frames)
|
93 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
94 |
+
num_frequencies, num_frames)
|
95 |
+
"""
|
96 |
+
input_data = F.pad(
|
97 |
+
input_data,
|
98 |
+
(self.pad_amount, self.pad_amount),
|
99 |
+
mode="reflect",
|
100 |
+
)
|
101 |
+
forward_transform = input_data.unfold(
|
102 |
+
1, self.filter_length, self.hop_length
|
103 |
+
).permute(0, 2, 1)
|
104 |
+
forward_transform = torch.matmul(self.forward_basis, forward_transform)
|
105 |
+
cutoff = int((self.filter_length / 2) + 1)
|
106 |
+
real_part = forward_transform[:, :cutoff, :]
|
107 |
+
imag_part = forward_transform[:, cutoff:, :]
|
108 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
109 |
+
if return_phase:
|
110 |
+
phase = torch.atan2(imag_part.data, real_part.data)
|
111 |
+
return magnitude, phase
|
112 |
+
else:
|
113 |
+
return magnitude
|
114 |
+
|
115 |
+
def inverse(
|
116 |
+
self,
|
117 |
+
magnitude: torch.Tensor,
|
118 |
+
phase: torch.Tensor,
|
119 |
+
) -> torch.Tensor:
|
120 |
+
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
|
121 |
+
by the ```transform``` function.
|
122 |
+
|
123 |
+
Arguments:
|
124 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
125 |
+
num_frequencies, num_frames)
|
126 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
127 |
+
num_frequencies, num_frames)
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
|
131 |
+
shape (num_batch, num_samples)
|
132 |
+
"""
|
133 |
+
cat = torch.cat(
|
134 |
+
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
135 |
+
)
|
136 |
+
fold = torch.nn.Fold(
|
137 |
+
output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
|
138 |
+
kernel_size=(1, self.filter_length),
|
139 |
+
stride=(1, self.hop_length),
|
140 |
+
)
|
141 |
+
inverse_transform = torch.matmul(self.inverse_basis, cat)
|
142 |
+
inverse_transform: torch.Tensor = fold(inverse_transform)[
|
143 |
+
:, 0, 0, self.pad_amount : -self.pad_amount
|
144 |
+
]
|
145 |
+
window_square_sum = (
|
146 |
+
self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
|
147 |
+
)
|
148 |
+
window_square_sum = fold(window_square_sum)[
|
149 |
+
:, 0, 0, self.pad_amount : -self.pad_amount
|
150 |
+
]
|
151 |
+
inverse_transform /= window_square_sum
|
152 |
+
return inverse_transform
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
input_data: torch.Tensor,
|
157 |
+
keyshift: int = 0,
|
158 |
+
speed: int = 1,
|
159 |
+
center: bool = True,
|
160 |
+
) -> torch.Tensor:
|
161 |
+
factor = 2 ** (keyshift / 12)
|
162 |
+
n_fft_new = int(np.round(self.filter_length * factor))
|
163 |
+
win_length_new = int(np.round(self.win_length * factor))
|
164 |
+
hop_length_new = int(np.round(self.hop_length * speed))
|
165 |
+
if self.use_torch_stft:
|
166 |
+
keyshift_key = str(keyshift) + "_" + str(input_data.device)
|
167 |
+
if keyshift_key not in self.hann_window:
|
168 |
+
self.hann_window[keyshift_key] = torch.hann_window(
|
169 |
+
self.win_length,
|
170 |
+
).to(input_data.device)
|
171 |
+
fft = torch.stft(
|
172 |
+
input_data,
|
173 |
+
n_fft=n_fft_new,
|
174 |
+
hop_length=hop_length_new,
|
175 |
+
win_length=win_length_new,
|
176 |
+
window=self.hann_window[keyshift_key],
|
177 |
+
center=center,
|
178 |
+
return_complex=True,
|
179 |
+
)
|
180 |
+
return torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
181 |
+
return self.transform(input_data)
|
182 |
+
"""Take input data (audio) to STFT domain and then back to audio.
|
183 |
+
|
184 |
+
Arguments:
|
185 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
|
189 |
+
shape (num_batch, num_samples)
|
190 |
+
reconstruction = self.inverse(
|
191 |
+
self.transform(input_data, return_phase=True),
|
192 |
+
)
|
193 |
+
return reconstruction
|
194 |
+
"""
|
rvc/hubert.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
|
5 |
+
from fairseq.checkpoint_utils import load_model_ensemble_and_task
|
6 |
+
from fairseq.utils import index_put
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
|
12 |
+
# @torch.jit.script
|
13 |
+
def pad_to_multiple(x, multiple, dim=-1, value=0):
|
14 |
+
# Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41
|
15 |
+
if x is None:
|
16 |
+
return None, 0
|
17 |
+
tsz = x.size(dim)
|
18 |
+
m = tsz / multiple
|
19 |
+
remainder = math.ceil(m) * multiple - tsz
|
20 |
+
if int(tsz % multiple) == 0:
|
21 |
+
return x, 0
|
22 |
+
pad_offset = (0,) * (-1 - dim) * 2
|
23 |
+
|
24 |
+
return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder
|
25 |
+
|
26 |
+
|
27 |
+
def extract_features(
|
28 |
+
self,
|
29 |
+
x,
|
30 |
+
padding_mask=None,
|
31 |
+
tgt_layer=None,
|
32 |
+
min_layer=0,
|
33 |
+
):
|
34 |
+
if padding_mask is not None:
|
35 |
+
x = index_put(x, padding_mask, 0)
|
36 |
+
|
37 |
+
x_conv = self.pos_conv(x.transpose(1, 2))
|
38 |
+
x_conv = x_conv.transpose(1, 2)
|
39 |
+
x = x + x_conv
|
40 |
+
|
41 |
+
if not self.layer_norm_first:
|
42 |
+
x = self.layer_norm(x)
|
43 |
+
|
44 |
+
# pad to the sequence length dimension
|
45 |
+
x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0)
|
46 |
+
if pad_length > 0 and padding_mask is None:
|
47 |
+
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
|
48 |
+
padding_mask[:, -pad_length:] = True
|
49 |
+
else:
|
50 |
+
padding_mask, _ = pad_to_multiple(
|
51 |
+
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
|
52 |
+
)
|
53 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
54 |
+
|
55 |
+
# B x T x C -> T x B x C
|
56 |
+
x = x.transpose(0, 1)
|
57 |
+
|
58 |
+
layer_results = []
|
59 |
+
r = None
|
60 |
+
for i, layer in enumerate(self.layers):
|
61 |
+
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
|
62 |
+
if not self.training or (dropout_probability > self.layerdrop):
|
63 |
+
x, (z, lr) = layer(
|
64 |
+
x, self_attn_padding_mask=padding_mask, need_weights=False
|
65 |
+
)
|
66 |
+
if i >= min_layer:
|
67 |
+
layer_results.append((x, z, lr))
|
68 |
+
if i == tgt_layer:
|
69 |
+
r = x
|
70 |
+
break
|
71 |
+
|
72 |
+
if r is not None:
|
73 |
+
x = r
|
74 |
+
|
75 |
+
# T x B x C -> B x T x C
|
76 |
+
x = x.transpose(0, 1)
|
77 |
+
|
78 |
+
# undo paddding
|
79 |
+
if pad_length > 0:
|
80 |
+
x = x[:, :-pad_length]
|
81 |
+
|
82 |
+
def undo_pad(a, b, c):
|
83 |
+
return (
|
84 |
+
a[:-pad_length],
|
85 |
+
b[:-pad_length] if b is not None else b,
|
86 |
+
c[:-pad_length],
|
87 |
+
)
|
88 |
+
|
89 |
+
layer_results = [undo_pad(*u) for u in layer_results]
|
90 |
+
|
91 |
+
return x, layer_results
|
92 |
+
|
93 |
+
|
94 |
+
def compute_mask_indices(
|
95 |
+
shape: Tuple[int, int],
|
96 |
+
padding_mask: Optional[torch.Tensor],
|
97 |
+
mask_prob: float,
|
98 |
+
mask_length: int,
|
99 |
+
mask_type: str = "static",
|
100 |
+
mask_other: float = 0.0,
|
101 |
+
min_masks: int = 0,
|
102 |
+
no_overlap: bool = False,
|
103 |
+
min_space: int = 0,
|
104 |
+
require_same_masks: bool = True,
|
105 |
+
mask_dropout: float = 0.0,
|
106 |
+
) -> torch.Tensor:
|
107 |
+
"""
|
108 |
+
Computes random mask spans for a given shape
|
109 |
+
|
110 |
+
Args:
|
111 |
+
shape: the the shape for which to compute masks.
|
112 |
+
should be of size 2 where first element is batch size and 2nd is timesteps
|
113 |
+
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
114 |
+
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
115 |
+
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
116 |
+
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
117 |
+
mask_type: how to compute mask lengths
|
118 |
+
static = fixed size
|
119 |
+
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
120 |
+
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
121 |
+
poisson = sample from possion distribution with lambda = mask length
|
122 |
+
min_masks: minimum number of masked spans
|
123 |
+
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
124 |
+
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
125 |
+
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample
|
126 |
+
mask_dropout: randomly dropout this percentage of masks in each example
|
127 |
+
"""
|
128 |
+
|
129 |
+
bsz, all_sz = shape
|
130 |
+
mask = torch.full((bsz, all_sz), False)
|
131 |
+
|
132 |
+
all_num_mask = int(
|
133 |
+
# add a random number for probabilistic rounding
|
134 |
+
mask_prob * all_sz / float(mask_length)
|
135 |
+
+ torch.rand([1]).item()
|
136 |
+
)
|
137 |
+
|
138 |
+
all_num_mask = max(min_masks, all_num_mask)
|
139 |
+
|
140 |
+
mask_idcs = []
|
141 |
+
for i in range(bsz):
|
142 |
+
if padding_mask is not None:
|
143 |
+
sz = all_sz - padding_mask[i].long().sum().item()
|
144 |
+
num_mask = int(mask_prob * sz / float(mask_length) + np.random.rand())
|
145 |
+
num_mask = max(min_masks, num_mask)
|
146 |
+
else:
|
147 |
+
sz = all_sz
|
148 |
+
num_mask = all_num_mask
|
149 |
+
|
150 |
+
if mask_type == "static":
|
151 |
+
lengths = torch.full([num_mask], mask_length)
|
152 |
+
elif mask_type == "uniform":
|
153 |
+
lengths = torch.randint(mask_other, mask_length * 2 + 1, size=[num_mask])
|
154 |
+
elif mask_type == "normal":
|
155 |
+
lengths = torch.normal(mask_length, mask_other, size=[num_mask])
|
156 |
+
lengths = [max(1, int(round(x))) for x in lengths]
|
157 |
+
else:
|
158 |
+
raise Exception("unknown mask selection " + mask_type)
|
159 |
+
|
160 |
+
if sum(lengths) == 0:
|
161 |
+
lengths[0] = min(mask_length, sz - 1)
|
162 |
+
|
163 |
+
if no_overlap:
|
164 |
+
mask_idc = []
|
165 |
+
|
166 |
+
def arrange(s, e, length, keep_length):
|
167 |
+
span_start = torch.randint(low=s, high=e - length, size=[1]).item()
|
168 |
+
mask_idc.extend(span_start + i for i in range(length))
|
169 |
+
|
170 |
+
new_parts = []
|
171 |
+
if span_start - s - min_space >= keep_length:
|
172 |
+
new_parts.append((s, span_start - min_space + 1))
|
173 |
+
if e - span_start - length - min_space > keep_length:
|
174 |
+
new_parts.append((span_start + length + min_space, e))
|
175 |
+
return new_parts
|
176 |
+
|
177 |
+
parts = [(0, sz)]
|
178 |
+
min_length = min(lengths)
|
179 |
+
for length in sorted(lengths, reverse=True):
|
180 |
+
t = [e - s if e - s >= length + min_space else 0 for s, e in parts]
|
181 |
+
lens = torch.asarray(t, dtype=torch.int)
|
182 |
+
l_sum = torch.sum(lens)
|
183 |
+
if l_sum == 0:
|
184 |
+
break
|
185 |
+
probs = lens / torch.sum(lens)
|
186 |
+
c = torch.multinomial(probs.float(), len(parts)).item()
|
187 |
+
s, e = parts.pop(c)
|
188 |
+
parts.extend(arrange(s, e, length, min_length))
|
189 |
+
mask_idc = torch.asarray(mask_idc)
|
190 |
+
else:
|
191 |
+
min_len = min(lengths)
|
192 |
+
if sz - min_len <= num_mask:
|
193 |
+
min_len = sz - num_mask - 1
|
194 |
+
mask_idc = torch.asarray(
|
195 |
+
random.sample([i for i in range(sz - min_len)], num_mask)
|
196 |
+
)
|
197 |
+
mask_idc = torch.asarray(
|
198 |
+
[
|
199 |
+
mask_idc[j] + offset
|
200 |
+
for j in range(len(mask_idc))
|
201 |
+
for offset in range(lengths[j])
|
202 |
+
]
|
203 |
+
)
|
204 |
+
|
205 |
+
mask_idcs.append(torch.unique(mask_idc[mask_idc < sz]))
|
206 |
+
|
207 |
+
min_len = min([len(m) for m in mask_idcs])
|
208 |
+
for i, mask_idc in enumerate(mask_idcs):
|
209 |
+
if isinstance(mask_idc, torch.Tensor):
|
210 |
+
mask_idc = torch.asarray(mask_idc, dtype=torch.float)
|
211 |
+
if len(mask_idc) > min_len and require_same_masks:
|
212 |
+
mask_idc = torch.asarray(
|
213 |
+
random.sample([i for i in range(mask_idc)], min_len)
|
214 |
+
)
|
215 |
+
if mask_dropout > 0:
|
216 |
+
num_holes = int(round(len(mask_idc) * mask_dropout))
|
217 |
+
mask_idc = torch.asarray(
|
218 |
+
random.sample([i for i in range(mask_idc)], len(mask_idc) - num_holes)
|
219 |
+
)
|
220 |
+
|
221 |
+
mask[i, mask_idc.int()] = True
|
222 |
+
|
223 |
+
return mask
|
224 |
+
|
225 |
+
|
226 |
+
def apply_mask(self, x, padding_mask, target_list):
|
227 |
+
B, T, C = x.shape
|
228 |
+
torch.zeros_like(x)
|
229 |
+
if self.mask_prob > 0:
|
230 |
+
mask_indices = compute_mask_indices(
|
231 |
+
(B, T),
|
232 |
+
padding_mask,
|
233 |
+
self.mask_prob,
|
234 |
+
self.mask_length,
|
235 |
+
self.mask_selection,
|
236 |
+
self.mask_other,
|
237 |
+
min_masks=2,
|
238 |
+
no_overlap=self.no_mask_overlap,
|
239 |
+
min_space=self.mask_min_space,
|
240 |
+
)
|
241 |
+
mask_indices = mask_indices.to(x.device)
|
242 |
+
x[mask_indices] = self.mask_emb
|
243 |
+
else:
|
244 |
+
mask_indices = None
|
245 |
+
|
246 |
+
if self.mask_channel_prob > 0:
|
247 |
+
mask_channel_indices = compute_mask_indices(
|
248 |
+
(B, C),
|
249 |
+
None,
|
250 |
+
self.mask_channel_prob,
|
251 |
+
self.mask_channel_length,
|
252 |
+
self.mask_channel_selection,
|
253 |
+
self.mask_channel_other,
|
254 |
+
no_overlap=self.no_mask_channel_overlap,
|
255 |
+
min_space=self.mask_channel_min_space,
|
256 |
+
)
|
257 |
+
mask_channel_indices = (
|
258 |
+
mask_channel_indices.to(x.device).unsqueeze(1).expand(-1, T, -1)
|
259 |
+
)
|
260 |
+
x[mask_channel_indices] = 0
|
261 |
+
|
262 |
+
return x, mask_indices
|
263 |
+
|
264 |
+
|
265 |
+
def get_hubert(model_path="assets/hubert/hubert_base.pt", device=torch.device("cpu")):
|
266 |
+
models, _, _ = load_model_ensemble_and_task(
|
267 |
+
[model_path],
|
268 |
+
suffix="",
|
269 |
+
)
|
270 |
+
hubert_model = models[0]
|
271 |
+
hubert_model = hubert_model.to(device)
|
272 |
+
|
273 |
+
def _apply_mask(x, padding_mask, target_list):
|
274 |
+
return apply_mask(hubert_model, x, padding_mask, target_list)
|
275 |
+
|
276 |
+
hubert_model.apply_mask = _apply_mask
|
277 |
+
|
278 |
+
def _extract_features(
|
279 |
+
x,
|
280 |
+
padding_mask=None,
|
281 |
+
tgt_layer=None,
|
282 |
+
min_layer=0,
|
283 |
+
):
|
284 |
+
return extract_features(
|
285 |
+
hubert_model.encoder,
|
286 |
+
x,
|
287 |
+
padding_mask=padding_mask,
|
288 |
+
tgt_layer=tgt_layer,
|
289 |
+
min_layer=min_layer,
|
290 |
+
)
|
291 |
+
|
292 |
+
hubert_model.encoder.extract_features = _extract_features
|
293 |
+
|
294 |
+
hubert_model._forward = hubert_model.forward
|
295 |
+
|
296 |
+
def hubert_extract_features(
|
297 |
+
self,
|
298 |
+
source: torch.Tensor,
|
299 |
+
padding_mask: Optional[torch.Tensor] = None,
|
300 |
+
mask: bool = False,
|
301 |
+
ret_conv: bool = False,
|
302 |
+
output_layer: Optional[int] = None,
|
303 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
304 |
+
res = self._forward(
|
305 |
+
source,
|
306 |
+
padding_mask=padding_mask,
|
307 |
+
mask=mask,
|
308 |
+
features_only=True,
|
309 |
+
output_layer=output_layer,
|
310 |
+
)
|
311 |
+
feature = res["features"] if ret_conv else res["x"]
|
312 |
+
return feature, res["padding_mask"]
|
313 |
+
|
314 |
+
def _hubert_extract_features(
|
315 |
+
source: torch.Tensor,
|
316 |
+
padding_mask: Optional[torch.Tensor] = None,
|
317 |
+
mask: bool = False,
|
318 |
+
ret_conv: bool = False,
|
319 |
+
output_layer: Optional[int] = None,
|
320 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
321 |
+
return hubert_extract_features(
|
322 |
+
hubert_model, source, padding_mask, mask, ret_conv, output_layer
|
323 |
+
)
|
324 |
+
|
325 |
+
hubert_model.extract_features = _hubert_extract_features
|
326 |
+
|
327 |
+
def infer(source, padding_mask, output_layer: torch.Tensor):
|
328 |
+
output_layer = output_layer.item()
|
329 |
+
logits = hubert_model.extract_features(
|
330 |
+
source=source, padding_mask=padding_mask, output_layer=output_layer
|
331 |
+
)
|
332 |
+
feats = hubert_model.final_proj(logits[0]) if output_layer == 9 else logits[0]
|
333 |
+
return feats
|
334 |
+
|
335 |
+
hubert_model.infer = infer
|
336 |
+
# hubert_model.forward=infer
|
337 |
+
# hubert_model.forward
|
338 |
+
|
339 |
+
return hubert_model
|
rvc/ipex/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
import torch
|
3 |
+
|
4 |
+
if torch.xpu.is_available():
|
5 |
+
from .init import ipex_init
|
6 |
+
|
7 |
+
ipex_init()
|
8 |
+
from .gradscaler import gradscaler_init
|
9 |
+
except Exception: # pylint: disable=broad-exception-caught
|
10 |
+
pass
|
rvc/ipex/attention.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
3 |
+
|
4 |
+
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
5 |
+
|
6 |
+
original_torch_bmm = torch.bmm
|
7 |
+
|
8 |
+
|
9 |
+
def torch_bmm(input, mat2, *, out=None):
|
10 |
+
if input.dtype != mat2.dtype:
|
11 |
+
mat2 = mat2.to(input.dtype)
|
12 |
+
|
13 |
+
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
|
14 |
+
batch_size_attention, input_tokens, mat2_shape = (
|
15 |
+
input.shape[0],
|
16 |
+
input.shape[1],
|
17 |
+
mat2.shape[2],
|
18 |
+
)
|
19 |
+
block_multiply = input.element_size()
|
20 |
+
slice_block_size = input_tokens * mat2_shape / 1024 / 1024 * block_multiply
|
21 |
+
block_size = batch_size_attention * slice_block_size
|
22 |
+
|
23 |
+
split_slice_size = batch_size_attention
|
24 |
+
if block_size > 4:
|
25 |
+
do_split = True
|
26 |
+
# Find something divisible with the input_tokens
|
27 |
+
while (split_slice_size * slice_block_size) > 4:
|
28 |
+
split_slice_size = split_slice_size // 2
|
29 |
+
if split_slice_size <= 1:
|
30 |
+
split_slice_size = 1
|
31 |
+
break
|
32 |
+
else:
|
33 |
+
do_split = False
|
34 |
+
|
35 |
+
split_2_slice_size = input_tokens
|
36 |
+
if split_slice_size * slice_block_size > 4:
|
37 |
+
slice_block_size2 = split_slice_size * mat2_shape / 1024 / 1024 * block_multiply
|
38 |
+
do_split_2 = True
|
39 |
+
# Find something divisible with the input_tokens
|
40 |
+
while (split_2_slice_size * slice_block_size2) > 4:
|
41 |
+
split_2_slice_size = split_2_slice_size // 2
|
42 |
+
if split_2_slice_size <= 1:
|
43 |
+
split_2_slice_size = 1
|
44 |
+
break
|
45 |
+
else:
|
46 |
+
do_split_2 = False
|
47 |
+
|
48 |
+
if do_split:
|
49 |
+
hidden_states = torch.zeros(
|
50 |
+
input.shape[0],
|
51 |
+
input.shape[1],
|
52 |
+
mat2.shape[2],
|
53 |
+
device=input.device,
|
54 |
+
dtype=input.dtype,
|
55 |
+
)
|
56 |
+
for i in range(batch_size_attention // split_slice_size):
|
57 |
+
start_idx = i * split_slice_size
|
58 |
+
end_idx = (i + 1) * split_slice_size
|
59 |
+
if do_split_2:
|
60 |
+
for i2 in range(
|
61 |
+
input_tokens // split_2_slice_size
|
62 |
+
): # pylint: disable=invalid-name
|
63 |
+
start_idx_2 = i2 * split_2_slice_size
|
64 |
+
end_idx_2 = (i2 + 1) * split_2_slice_size
|
65 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = (
|
66 |
+
original_torch_bmm(
|
67 |
+
input[start_idx:end_idx, start_idx_2:end_idx_2],
|
68 |
+
mat2[start_idx:end_idx, start_idx_2:end_idx_2],
|
69 |
+
out=out,
|
70 |
+
)
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
hidden_states[start_idx:end_idx] = original_torch_bmm(
|
74 |
+
input[start_idx:end_idx], mat2[start_idx:end_idx], out=out
|
75 |
+
)
|
76 |
+
else:
|
77 |
+
return original_torch_bmm(input, mat2, out=out)
|
78 |
+
return hidden_states
|
79 |
+
|
80 |
+
|
81 |
+
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
82 |
+
|
83 |
+
|
84 |
+
def scaled_dot_product_attention(
|
85 |
+
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False
|
86 |
+
):
|
87 |
+
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
|
88 |
+
if len(query.shape) == 3:
|
89 |
+
batch_size_attention, query_tokens, shape_four = query.shape
|
90 |
+
shape_one = 1
|
91 |
+
no_shape_one = True
|
92 |
+
else:
|
93 |
+
shape_one, batch_size_attention, query_tokens, shape_four = query.shape
|
94 |
+
no_shape_one = False
|
95 |
+
|
96 |
+
block_multiply = query.element_size()
|
97 |
+
slice_block_size = (
|
98 |
+
shape_one * query_tokens * shape_four / 1024 / 1024 * block_multiply
|
99 |
+
)
|
100 |
+
block_size = batch_size_attention * slice_block_size
|
101 |
+
|
102 |
+
split_slice_size = batch_size_attention
|
103 |
+
if block_size > 4:
|
104 |
+
do_split = True
|
105 |
+
# Find something divisible with the shape_one
|
106 |
+
while (split_slice_size * slice_block_size) > 4:
|
107 |
+
split_slice_size = split_slice_size // 2
|
108 |
+
if split_slice_size <= 1:
|
109 |
+
split_slice_size = 1
|
110 |
+
break
|
111 |
+
else:
|
112 |
+
do_split = False
|
113 |
+
|
114 |
+
split_2_slice_size = query_tokens
|
115 |
+
if split_slice_size * slice_block_size > 4:
|
116 |
+
slice_block_size2 = (
|
117 |
+
shape_one * split_slice_size * shape_four / 1024 / 1024 * block_multiply
|
118 |
+
)
|
119 |
+
do_split_2 = True
|
120 |
+
# Find something divisible with the batch_size_attention
|
121 |
+
while (split_2_slice_size * slice_block_size2) > 4:
|
122 |
+
split_2_slice_size = split_2_slice_size // 2
|
123 |
+
if split_2_slice_size <= 1:
|
124 |
+
split_2_slice_size = 1
|
125 |
+
break
|
126 |
+
else:
|
127 |
+
do_split_2 = False
|
128 |
+
|
129 |
+
if do_split:
|
130 |
+
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype)
|
131 |
+
for i in range(batch_size_attention // split_slice_size):
|
132 |
+
start_idx = i * split_slice_size
|
133 |
+
end_idx = (i + 1) * split_slice_size
|
134 |
+
if do_split_2:
|
135 |
+
for i2 in range(
|
136 |
+
query_tokens // split_2_slice_size
|
137 |
+
): # pylint: disable=invalid-name
|
138 |
+
start_idx_2 = i2 * split_2_slice_size
|
139 |
+
end_idx_2 = (i2 + 1) * split_2_slice_size
|
140 |
+
if no_shape_one:
|
141 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = (
|
142 |
+
original_scaled_dot_product_attention(
|
143 |
+
query[start_idx:end_idx, start_idx_2:end_idx_2],
|
144 |
+
key[start_idx:end_idx, start_idx_2:end_idx_2],
|
145 |
+
value[start_idx:end_idx, start_idx_2:end_idx_2],
|
146 |
+
attn_mask=(
|
147 |
+
attn_mask[start_idx:end_idx, start_idx_2:end_idx_2]
|
148 |
+
if attn_mask is not None
|
149 |
+
else attn_mask
|
150 |
+
),
|
151 |
+
dropout_p=dropout_p,
|
152 |
+
is_causal=is_causal,
|
153 |
+
)
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
hidden_states[:, start_idx:end_idx, start_idx_2:end_idx_2] = (
|
157 |
+
original_scaled_dot_product_attention(
|
158 |
+
query[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
159 |
+
key[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
160 |
+
value[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
161 |
+
attn_mask=(
|
162 |
+
attn_mask[
|
163 |
+
:, start_idx:end_idx, start_idx_2:end_idx_2
|
164 |
+
]
|
165 |
+
if attn_mask is not None
|
166 |
+
else attn_mask
|
167 |
+
),
|
168 |
+
dropout_p=dropout_p,
|
169 |
+
is_causal=is_causal,
|
170 |
+
)
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
if no_shape_one:
|
174 |
+
hidden_states[start_idx:end_idx] = (
|
175 |
+
original_scaled_dot_product_attention(
|
176 |
+
query[start_idx:end_idx],
|
177 |
+
key[start_idx:end_idx],
|
178 |
+
value[start_idx:end_idx],
|
179 |
+
attn_mask=(
|
180 |
+
attn_mask[start_idx:end_idx]
|
181 |
+
if attn_mask is not None
|
182 |
+
else attn_mask
|
183 |
+
),
|
184 |
+
dropout_p=dropout_p,
|
185 |
+
is_causal=is_causal,
|
186 |
+
)
|
187 |
+
)
|
188 |
+
else:
|
189 |
+
hidden_states[:, start_idx:end_idx] = (
|
190 |
+
original_scaled_dot_product_attention(
|
191 |
+
query[:, start_idx:end_idx],
|
192 |
+
key[:, start_idx:end_idx],
|
193 |
+
value[:, start_idx:end_idx],
|
194 |
+
attn_mask=(
|
195 |
+
attn_mask[:, start_idx:end_idx]
|
196 |
+
if attn_mask is not None
|
197 |
+
else attn_mask
|
198 |
+
),
|
199 |
+
dropout_p=dropout_p,
|
200 |
+
is_causal=is_causal,
|
201 |
+
)
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
return original_scaled_dot_product_attention(
|
205 |
+
query,
|
206 |
+
key,
|
207 |
+
value,
|
208 |
+
attn_mask=attn_mask,
|
209 |
+
dropout_p=dropout_p,
|
210 |
+
is_causal=is_causal,
|
211 |
+
)
|
212 |
+
return hidden_states
|
213 |
+
|
214 |
+
|
215 |
+
def attention_init():
|
216 |
+
# ARC GPUs can't allocate more than 4GB to a single block:
|
217 |
+
torch.bmm = torch_bmm
|
218 |
+
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
|
rvc/ipex/gradscaler.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
5 |
+
import intel_extension_for_pytorch._C as core # pylint: disable=import-error, unused-import
|
6 |
+
|
7 |
+
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
8 |
+
|
9 |
+
OptState = ipex.cpu.autocast._grad_scaler.OptState
|
10 |
+
_MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator
|
11 |
+
_refresh_per_optimizer_state = (
|
12 |
+
ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def _unscale_grads_(
|
17 |
+
self, optimizer, inv_scale, found_inf, allow_fp16
|
18 |
+
): # pylint: disable=unused-argument
|
19 |
+
per_device_inv_scale = _MultiDeviceReplicator(inv_scale)
|
20 |
+
per_device_found_inf = _MultiDeviceReplicator(found_inf)
|
21 |
+
|
22 |
+
# To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype.
|
23 |
+
# There could be hundreds of grads, so we'd like to iterate through them just once.
|
24 |
+
# However, we don't know their devices or dtypes in advance.
|
25 |
+
|
26 |
+
# https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict
|
27 |
+
# Google says mypy struggles with defaultdicts type annotations.
|
28 |
+
per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated]
|
29 |
+
# sync grad to master weight
|
30 |
+
if hasattr(optimizer, "sync_grad"):
|
31 |
+
optimizer.sync_grad()
|
32 |
+
with torch.no_grad():
|
33 |
+
for group in optimizer.param_groups:
|
34 |
+
for param in group["params"]:
|
35 |
+
if param.grad is None:
|
36 |
+
continue
|
37 |
+
if (not allow_fp16) and param.grad.dtype == torch.float16:
|
38 |
+
raise ValueError("Attempting to unscale FP16 gradients.")
|
39 |
+
if param.grad.is_sparse:
|
40 |
+
# is_coalesced() == False means the sparse grad has values with duplicate indices.
|
41 |
+
# coalesce() deduplicates indices and adds all values that have the same index.
|
42 |
+
# For scaled fp16 values, there's a good chance coalescing will cause overflow,
|
43 |
+
# so we should check the coalesced _values().
|
44 |
+
if param.grad.dtype is torch.float16:
|
45 |
+
param.grad = param.grad.coalesce()
|
46 |
+
to_unscale = param.grad._values()
|
47 |
+
else:
|
48 |
+
to_unscale = param.grad
|
49 |
+
|
50 |
+
# -: is there a way to split by device and dtype without appending in the inner loop?
|
51 |
+
to_unscale = to_unscale.to("cpu")
|
52 |
+
per_device_and_dtype_grads[to_unscale.device][to_unscale.dtype].append(
|
53 |
+
to_unscale
|
54 |
+
)
|
55 |
+
|
56 |
+
for _, per_dtype_grads in per_device_and_dtype_grads.items():
|
57 |
+
for grads in per_dtype_grads.values():
|
58 |
+
core._amp_foreach_non_finite_check_and_unscale_(
|
59 |
+
grads,
|
60 |
+
per_device_found_inf.get("cpu"),
|
61 |
+
per_device_inv_scale.get("cpu"),
|
62 |
+
)
|
63 |
+
|
64 |
+
return per_device_found_inf._per_device_tensors
|
65 |
+
|
66 |
+
|
67 |
+
def unscale_(self, optimizer):
|
68 |
+
"""
|
69 |
+
Divides ("unscales") the optimizer's gradient tensors by the scale factor.
|
70 |
+
:meth:`unscale_` is optional, serving cases where you need to
|
71 |
+
:ref:`modify or inspect gradients<working-with-unscaled-gradients>`
|
72 |
+
between the backward pass(es) and :meth:`step`.
|
73 |
+
If :meth:`unscale_` is not called explicitly, gradients will be unscaled automatically during :meth:`step`.
|
74 |
+
Simple example, using :meth:`unscale_` to enable clipping of unscaled gradients::
|
75 |
+
...
|
76 |
+
scaler.scale(loss).backward()
|
77 |
+
scaler.unscale_(optimizer)
|
78 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
|
79 |
+
scaler.step(optimizer)
|
80 |
+
scaler.update()
|
81 |
+
Args:
|
82 |
+
optimizer (torch.optim.Optimizer): Optimizer that owns the gradients to be unscaled.
|
83 |
+
.. warning::
|
84 |
+
:meth:`unscale_` should only be called once per optimizer per :meth:`step` call,
|
85 |
+
and only after all gradients for that optimizer's assigned parameters have been accumulated.
|
86 |
+
Calling :meth:`unscale_` twice for a given optimizer between each :meth:`step` triggers a RuntimeError.
|
87 |
+
.. warning::
|
88 |
+
:meth:`unscale_` may unscale sparse gradients out of place, replacing the ``.grad`` attribute.
|
89 |
+
"""
|
90 |
+
if not self._enabled:
|
91 |
+
return
|
92 |
+
|
93 |
+
self._check_scale_growth_tracker("unscale_")
|
94 |
+
|
95 |
+
optimizer_state = self._per_optimizer_states[id(optimizer)]
|
96 |
+
|
97 |
+
if optimizer_state["stage"] is OptState.UNSCALED: # pylint: disable=no-else-raise
|
98 |
+
raise RuntimeError(
|
99 |
+
"unscale_() has already been called on this optimizer since the last update()."
|
100 |
+
)
|
101 |
+
elif optimizer_state["stage"] is OptState.STEPPED:
|
102 |
+
raise RuntimeError("unscale_() is being called after step().")
|
103 |
+
|
104 |
+
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
|
105 |
+
assert self._scale is not None
|
106 |
+
inv_scale = (
|
107 |
+
self._scale.to("cpu").double().reciprocal().float().to(self._scale.device)
|
108 |
+
)
|
109 |
+
found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=self._scale.device)
|
110 |
+
|
111 |
+
optimizer_state["found_inf_per_device"] = self._unscale_grads_(
|
112 |
+
optimizer, inv_scale, found_inf, False
|
113 |
+
)
|
114 |
+
optimizer_state["stage"] = OptState.UNSCALED
|
115 |
+
|
116 |
+
|
117 |
+
def update(self, new_scale=None):
|
118 |
+
"""
|
119 |
+
Updates the scale factor.
|
120 |
+
If any optimizer steps were skipped the scale is multiplied by ``backoff_factor``
|
121 |
+
to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively,
|
122 |
+
the scale is multiplied by ``growth_factor`` to increase it.
|
123 |
+
Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not
|
124 |
+
used directly, it's used to fill GradScaler's internal scale tensor. So if
|
125 |
+
``new_scale`` was a tensor, later in-place changes to that tensor will not further
|
126 |
+
affect the scale GradScaler uses internally.)
|
127 |
+
Args:
|
128 |
+
new_scale (float or :class:`torch.FloatTensor`, optional, default=None): New scale factor.
|
129 |
+
.. warning::
|
130 |
+
:meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has
|
131 |
+
been invoked for all optimizers used this iteration.
|
132 |
+
"""
|
133 |
+
if not self._enabled:
|
134 |
+
return
|
135 |
+
|
136 |
+
_scale, _growth_tracker = self._check_scale_growth_tracker("update")
|
137 |
+
|
138 |
+
if new_scale is not None:
|
139 |
+
# Accept a new user-defined scale.
|
140 |
+
if isinstance(new_scale, float):
|
141 |
+
self._scale.fill_(new_scale) # type: ignore[union-attr]
|
142 |
+
else:
|
143 |
+
reason = "new_scale should be a float or a 1-element torch.FloatTensor with requires_grad=False."
|
144 |
+
assert isinstance(new_scale, torch.FloatTensor), reason # type: ignore[attr-defined]
|
145 |
+
assert new_scale.numel() == 1, reason
|
146 |
+
assert new_scale.requires_grad is False, reason
|
147 |
+
self._scale.copy_(new_scale) # type: ignore[union-attr]
|
148 |
+
else:
|
149 |
+
# Consume shared inf/nan data collected from optimizers to update the scale.
|
150 |
+
# If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
|
151 |
+
found_infs = [
|
152 |
+
found_inf.to(device="cpu", non_blocking=True)
|
153 |
+
for state in self._per_optimizer_states.values()
|
154 |
+
for found_inf in state["found_inf_per_device"].values()
|
155 |
+
]
|
156 |
+
|
157 |
+
assert len(found_infs) > 0, "No inf checks were recorded prior to update."
|
158 |
+
|
159 |
+
found_inf_combined = found_infs[0]
|
160 |
+
if len(found_infs) > 1:
|
161 |
+
for i in range(1, len(found_infs)):
|
162 |
+
found_inf_combined += found_infs[i]
|
163 |
+
|
164 |
+
to_device = _scale.device
|
165 |
+
_scale = _scale.to("cpu")
|
166 |
+
_growth_tracker = _growth_tracker.to("cpu")
|
167 |
+
|
168 |
+
core._amp_update_scale_(
|
169 |
+
_scale,
|
170 |
+
_growth_tracker,
|
171 |
+
found_inf_combined,
|
172 |
+
self._growth_factor,
|
173 |
+
self._backoff_factor,
|
174 |
+
self._growth_interval,
|
175 |
+
)
|
176 |
+
|
177 |
+
_scale = _scale.to(to_device)
|
178 |
+
_growth_tracker = _growth_tracker.to(to_device)
|
179 |
+
# To prepare for next iteration, clear the data collected from optimizers this iteration.
|
180 |
+
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|
181 |
+
|
182 |
+
|
183 |
+
def gradscaler_init():
|
184 |
+
torch.xpu.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
|
185 |
+
torch.xpu.amp.GradScaler._unscale_grads_ = _unscale_grads_
|
186 |
+
torch.xpu.amp.GradScaler.unscale_ = unscale_
|
187 |
+
torch.xpu.amp.GradScaler.update = update
|
188 |
+
return torch.xpu.amp.GradScaler
|
rvc/ipex/hijacks.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import importlib
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
6 |
+
|
7 |
+
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
|
8 |
+
|
9 |
+
|
10 |
+
class CondFunc: # pylint: disable=missing-class-docstring
|
11 |
+
def __new__(cls, orig_func, sub_func, cond_func):
|
12 |
+
self = super(CondFunc, cls).__new__(cls)
|
13 |
+
if isinstance(orig_func, str):
|
14 |
+
func_path = orig_func.split(".")
|
15 |
+
for i in range(len(func_path) - 1, -1, -1):
|
16 |
+
try:
|
17 |
+
resolved_obj = importlib.import_module(".".join(func_path[:i]))
|
18 |
+
break
|
19 |
+
except ImportError:
|
20 |
+
pass
|
21 |
+
for attr_name in func_path[i:-1]:
|
22 |
+
resolved_obj = getattr(resolved_obj, attr_name)
|
23 |
+
orig_func = getattr(resolved_obj, func_path[-1])
|
24 |
+
setattr(
|
25 |
+
resolved_obj,
|
26 |
+
func_path[-1],
|
27 |
+
lambda *args, **kwargs: self(*args, **kwargs),
|
28 |
+
)
|
29 |
+
self.__init__(orig_func, sub_func, cond_func)
|
30 |
+
return lambda *args, **kwargs: self(*args, **kwargs)
|
31 |
+
|
32 |
+
def __init__(self, orig_func, sub_func, cond_func):
|
33 |
+
self.__orig_func = orig_func
|
34 |
+
self.__sub_func = sub_func
|
35 |
+
self.__cond_func = cond_func
|
36 |
+
|
37 |
+
def __call__(self, *args, **kwargs):
|
38 |
+
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
|
39 |
+
return self.__sub_func(self.__orig_func, *args, **kwargs)
|
40 |
+
else:
|
41 |
+
return self.__orig_func(*args, **kwargs)
|
42 |
+
|
43 |
+
|
44 |
+
_utils = torch.utils.data._utils
|
45 |
+
|
46 |
+
|
47 |
+
def _shutdown_workers(self):
|
48 |
+
if (
|
49 |
+
torch.utils.data._utils is None
|
50 |
+
or torch.utils.data._utils.python_exit_status is True
|
51 |
+
or torch.utils.data._utils.python_exit_status is None
|
52 |
+
):
|
53 |
+
return
|
54 |
+
if hasattr(self, "_shutdown") and not self._shutdown:
|
55 |
+
self._shutdown = True
|
56 |
+
try:
|
57 |
+
if hasattr(self, "_pin_memory_thread"):
|
58 |
+
self._pin_memory_thread_done_event.set()
|
59 |
+
self._worker_result_queue.put((None, None))
|
60 |
+
self._pin_memory_thread.join()
|
61 |
+
self._worker_result_queue.cancel_join_thread()
|
62 |
+
self._worker_result_queue.close()
|
63 |
+
self._workers_done_event.set()
|
64 |
+
for worker_id in range(len(self._workers)):
|
65 |
+
if self._persistent_workers or self._workers_status[worker_id]:
|
66 |
+
self._mark_worker_as_unavailable(worker_id, shutdown=True)
|
67 |
+
for w in self._workers: # pylint: disable=invalid-name
|
68 |
+
w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL)
|
69 |
+
for q in self._index_queues: # pylint: disable=invalid-name
|
70 |
+
q.cancel_join_thread()
|
71 |
+
q.close()
|
72 |
+
finally:
|
73 |
+
if self._worker_pids_set:
|
74 |
+
torch.utils.data._utils.signal_handling._remove_worker_pids(id(self))
|
75 |
+
self._worker_pids_set = False
|
76 |
+
for w in self._workers: # pylint: disable=invalid-name
|
77 |
+
if w.is_alive():
|
78 |
+
w.terminate()
|
79 |
+
|
80 |
+
|
81 |
+
class DummyDataParallel(
|
82 |
+
torch.nn.Module
|
83 |
+
): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
|
84 |
+
def __new__(
|
85 |
+
cls, module, device_ids=None, output_device=None, dim=0
|
86 |
+
): # pylint: disable=unused-argument
|
87 |
+
if isinstance(device_ids, list) and len(device_ids) > 1:
|
88 |
+
print("IPEX backend doesn't support DataParallel on multiple XPU devices")
|
89 |
+
return module.to("xpu")
|
90 |
+
|
91 |
+
|
92 |
+
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
|
93 |
+
return contextlib.nullcontext()
|
94 |
+
|
95 |
+
|
96 |
+
def check_device(device):
|
97 |
+
return bool(
|
98 |
+
(isinstance(device, torch.device) and device.type == "cuda")
|
99 |
+
or (isinstance(device, str) and "cuda" in device)
|
100 |
+
or isinstance(device, int)
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
def return_xpu(device):
|
105 |
+
return (
|
106 |
+
f"xpu:{device[-1]}"
|
107 |
+
if isinstance(device, str) and ":" in device
|
108 |
+
else (
|
109 |
+
f"xpu:{device}"
|
110 |
+
if isinstance(device, int)
|
111 |
+
else torch.device("xpu") if isinstance(device, torch.device) else "xpu"
|
112 |
+
)
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
def ipex_no_cuda(orig_func, *args, **kwargs):
|
117 |
+
torch.cuda.is_available = lambda: False
|
118 |
+
orig_func(*args, **kwargs)
|
119 |
+
torch.cuda.is_available = torch.xpu.is_available
|
120 |
+
|
121 |
+
|
122 |
+
original_autocast = torch.autocast
|
123 |
+
|
124 |
+
|
125 |
+
def ipex_autocast(*args, **kwargs):
|
126 |
+
if len(args) > 0 and args[0] == "cuda":
|
127 |
+
return original_autocast("xpu", *args[1:], **kwargs)
|
128 |
+
else:
|
129 |
+
return original_autocast(*args, **kwargs)
|
130 |
+
|
131 |
+
|
132 |
+
original_torch_cat = torch.cat
|
133 |
+
|
134 |
+
|
135 |
+
def torch_cat(tensor, *args, **kwargs):
|
136 |
+
if len(tensor) == 3 and (
|
137 |
+
tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype
|
138 |
+
):
|
139 |
+
return original_torch_cat(
|
140 |
+
[tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)],
|
141 |
+
*args,
|
142 |
+
**kwargs,
|
143 |
+
)
|
144 |
+
else:
|
145 |
+
return original_torch_cat(tensor, *args, **kwargs)
|
146 |
+
|
147 |
+
|
148 |
+
original_interpolate = torch.nn.functional.interpolate
|
149 |
+
|
150 |
+
|
151 |
+
def interpolate(
|
152 |
+
tensor,
|
153 |
+
size=None,
|
154 |
+
scale_factor=None,
|
155 |
+
mode="nearest",
|
156 |
+
align_corners=None,
|
157 |
+
recompute_scale_factor=None,
|
158 |
+
antialias=False,
|
159 |
+
): # pylint: disable=too-many-arguments
|
160 |
+
if antialias or align_corners is not None:
|
161 |
+
return_device = tensor.device
|
162 |
+
return_dtype = tensor.dtype
|
163 |
+
return original_interpolate(
|
164 |
+
tensor.to("cpu", dtype=torch.float32),
|
165 |
+
size=size,
|
166 |
+
scale_factor=scale_factor,
|
167 |
+
mode=mode,
|
168 |
+
align_corners=align_corners,
|
169 |
+
recompute_scale_factor=recompute_scale_factor,
|
170 |
+
antialias=antialias,
|
171 |
+
).to(return_device, dtype=return_dtype)
|
172 |
+
else:
|
173 |
+
return original_interpolate(
|
174 |
+
tensor,
|
175 |
+
size=size,
|
176 |
+
scale_factor=scale_factor,
|
177 |
+
mode=mode,
|
178 |
+
align_corners=align_corners,
|
179 |
+
recompute_scale_factor=recompute_scale_factor,
|
180 |
+
antialias=antialias,
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
original_linalg_solve = torch.linalg.solve
|
185 |
+
|
186 |
+
|
187 |
+
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
|
188 |
+
if A.device != torch.device("cpu") or B.device != torch.device("cpu"):
|
189 |
+
return_device = A.device
|
190 |
+
return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(
|
191 |
+
return_device
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
return original_linalg_solve(A, B, *args, **kwargs)
|
195 |
+
|
196 |
+
|
197 |
+
def ipex_hijacks():
|
198 |
+
CondFunc(
|
199 |
+
"torch.Tensor.to",
|
200 |
+
lambda orig_func, self, device=None, *args, **kwargs: orig_func(
|
201 |
+
self, return_xpu(device), *args, **kwargs
|
202 |
+
),
|
203 |
+
lambda orig_func, self, device=None, *args, **kwargs: check_device(device),
|
204 |
+
)
|
205 |
+
CondFunc(
|
206 |
+
"torch.Tensor.cuda",
|
207 |
+
lambda orig_func, self, device=None, *args, **kwargs: orig_func(
|
208 |
+
self, return_xpu(device), *args, **kwargs
|
209 |
+
),
|
210 |
+
lambda orig_func, self, device=None, *args, **kwargs: check_device(device),
|
211 |
+
)
|
212 |
+
CondFunc(
|
213 |
+
"torch.empty",
|
214 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
215 |
+
*args, device=return_xpu(device), **kwargs
|
216 |
+
),
|
217 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
218 |
+
)
|
219 |
+
CondFunc(
|
220 |
+
"torch.load",
|
221 |
+
lambda orig_func, *args, map_location=None, **kwargs: orig_func(
|
222 |
+
*args, return_xpu(map_location), **kwargs
|
223 |
+
),
|
224 |
+
lambda orig_func, *args, map_location=None, **kwargs: map_location is None
|
225 |
+
or check_device(map_location),
|
226 |
+
)
|
227 |
+
CondFunc(
|
228 |
+
"torch.randn",
|
229 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
230 |
+
*args, device=return_xpu(device), **kwargs
|
231 |
+
),
|
232 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
233 |
+
)
|
234 |
+
CondFunc(
|
235 |
+
"torch.ones",
|
236 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
237 |
+
*args, device=return_xpu(device), **kwargs
|
238 |
+
),
|
239 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
240 |
+
)
|
241 |
+
CondFunc(
|
242 |
+
"torch.zeros",
|
243 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
244 |
+
*args, device=return_xpu(device), **kwargs
|
245 |
+
),
|
246 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
247 |
+
)
|
248 |
+
CondFunc(
|
249 |
+
"torch.tensor",
|
250 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
251 |
+
*args, device=return_xpu(device), **kwargs
|
252 |
+
),
|
253 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
254 |
+
)
|
255 |
+
CondFunc(
|
256 |
+
"torch.linspace",
|
257 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
258 |
+
*args, device=return_xpu(device), **kwargs
|
259 |
+
),
|
260 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
261 |
+
)
|
262 |
+
|
263 |
+
CondFunc(
|
264 |
+
"torch.Generator",
|
265 |
+
lambda orig_func, device=None: torch.xpu.Generator(device),
|
266 |
+
lambda orig_func, device=None: device is not None
|
267 |
+
and device != torch.device("cpu")
|
268 |
+
and device != "cpu",
|
269 |
+
)
|
270 |
+
|
271 |
+
CondFunc(
|
272 |
+
"torch.batch_norm",
|
273 |
+
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(
|
274 |
+
input,
|
275 |
+
(
|
276 |
+
weight
|
277 |
+
if weight is not None
|
278 |
+
else torch.ones(input.size()[1], device=input.device)
|
279 |
+
),
|
280 |
+
(
|
281 |
+
bias
|
282 |
+
if bias is not None
|
283 |
+
else torch.zeros(input.size()[1], device=input.device)
|
284 |
+
),
|
285 |
+
*args,
|
286 |
+
**kwargs,
|
287 |
+
),
|
288 |
+
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"),
|
289 |
+
)
|
290 |
+
CondFunc(
|
291 |
+
"torch.instance_norm",
|
292 |
+
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(
|
293 |
+
input,
|
294 |
+
(
|
295 |
+
weight
|
296 |
+
if weight is not None
|
297 |
+
else torch.ones(input.size()[1], device=input.device)
|
298 |
+
),
|
299 |
+
(
|
300 |
+
bias
|
301 |
+
if bias is not None
|
302 |
+
else torch.zeros(input.size()[1], device=input.device)
|
303 |
+
),
|
304 |
+
*args,
|
305 |
+
**kwargs,
|
306 |
+
),
|
307 |
+
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"),
|
308 |
+
)
|
309 |
+
|
310 |
+
# Functions with dtype errors:
|
311 |
+
CondFunc(
|
312 |
+
"torch.nn.modules.GroupNorm.forward",
|
313 |
+
lambda orig_func, self, input: orig_func(
|
314 |
+
self, input.to(self.weight.data.dtype)
|
315 |
+
),
|
316 |
+
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
|
317 |
+
)
|
318 |
+
CondFunc(
|
319 |
+
"torch.nn.modules.linear.Linear.forward",
|
320 |
+
lambda orig_func, self, input: orig_func(
|
321 |
+
self, input.to(self.weight.data.dtype)
|
322 |
+
),
|
323 |
+
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
|
324 |
+
)
|
325 |
+
CondFunc(
|
326 |
+
"torch.nn.modules.conv.Conv2d.forward",
|
327 |
+
lambda orig_func, self, input: orig_func(
|
328 |
+
self, input.to(self.weight.data.dtype)
|
329 |
+
),
|
330 |
+
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
|
331 |
+
)
|
332 |
+
CondFunc(
|
333 |
+
"torch.nn.functional.layer_norm",
|
334 |
+
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: orig_func(
|
335 |
+
input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs
|
336 |
+
),
|
337 |
+
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: weight
|
338 |
+
is not None
|
339 |
+
and input.dtype != weight.data.dtype,
|
340 |
+
)
|
341 |
+
|
342 |
+
# Diffusers Float64 (ARC GPUs doesn't support double or Float64):
|
343 |
+
if not torch.xpu.has_fp64_dtype():
|
344 |
+
CondFunc(
|
345 |
+
"torch.from_numpy",
|
346 |
+
lambda orig_func, ndarray: orig_func(ndarray.astype("float32")),
|
347 |
+
lambda orig_func, ndarray: ndarray.dtype == float,
|
348 |
+
)
|
349 |
+
|
350 |
+
# Broken functions when torch.cuda.is_available is True:
|
351 |
+
CondFunc(
|
352 |
+
"torch.utils.data.dataloader._BaseDataLoaderIter.__init__",
|
353 |
+
lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs),
|
354 |
+
lambda orig_func, *args, **kwargs: True,
|
355 |
+
)
|
356 |
+
|
357 |
+
# Functions that make compile mad with CondFunc:
|
358 |
+
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = (
|
359 |
+
_shutdown_workers
|
360 |
+
)
|
361 |
+
torch.nn.DataParallel = DummyDataParallel
|
362 |
+
torch.autocast = ipex_autocast
|
363 |
+
torch.cat = torch_cat
|
364 |
+
torch.linalg.solve = linalg_solve
|
365 |
+
torch.nn.functional.interpolate = interpolate
|
366 |
+
torch.backends.cuda.sdp_kernel = return_null_context
|
rvc/ipex/init.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import contextlib
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
7 |
+
|
8 |
+
from .hijacks import ipex_hijacks
|
9 |
+
from .attention import attention_init
|
10 |
+
|
11 |
+
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
12 |
+
|
13 |
+
|
14 |
+
def ipex_init(): # pylint: disable=too-many-statements
|
15 |
+
try:
|
16 |
+
# Replace cuda with xpu:
|
17 |
+
torch.cuda.current_device = torch.xpu.current_device
|
18 |
+
torch.cuda.current_stream = torch.xpu.current_stream
|
19 |
+
torch.cuda.device = torch.xpu.device
|
20 |
+
torch.cuda.device_count = torch.xpu.device_count
|
21 |
+
torch.cuda.device_of = torch.xpu.device_of
|
22 |
+
torch.cuda.get_device_name = torch.xpu.get_device_name
|
23 |
+
torch.cuda.get_device_properties = torch.xpu.get_device_properties
|
24 |
+
torch.cuda.init = torch.xpu.init
|
25 |
+
torch.cuda.is_available = torch.xpu.is_available
|
26 |
+
torch.cuda.is_initialized = torch.xpu.is_initialized
|
27 |
+
torch.cuda.is_current_stream_capturing = lambda: False
|
28 |
+
torch.cuda.set_device = torch.xpu.set_device
|
29 |
+
torch.cuda.stream = torch.xpu.stream
|
30 |
+
torch.cuda.synchronize = torch.xpu.synchronize
|
31 |
+
torch.cuda.Event = torch.xpu.Event
|
32 |
+
torch.cuda.Stream = torch.xpu.Stream
|
33 |
+
torch.cuda.FloatTensor = torch.xpu.FloatTensor
|
34 |
+
torch.Tensor.cuda = torch.Tensor.xpu
|
35 |
+
torch.Tensor.is_cuda = torch.Tensor.is_xpu
|
36 |
+
torch.cuda._initialization_lock = torch.xpu.lazy_init._initialization_lock
|
37 |
+
torch.cuda._initialized = torch.xpu.lazy_init._initialized
|
38 |
+
torch.cuda._lazy_seed_tracker = torch.xpu.lazy_init._lazy_seed_tracker
|
39 |
+
torch.cuda._queued_calls = torch.xpu.lazy_init._queued_calls
|
40 |
+
torch.cuda._tls = torch.xpu.lazy_init._tls
|
41 |
+
torch.cuda.threading = torch.xpu.lazy_init.threading
|
42 |
+
torch.cuda.traceback = torch.xpu.lazy_init.traceback
|
43 |
+
torch.cuda.Optional = torch.xpu.Optional
|
44 |
+
torch.cuda.__cached__ = torch.xpu.__cached__
|
45 |
+
torch.cuda.__loader__ = torch.xpu.__loader__
|
46 |
+
torch.cuda.ComplexFloatStorage = torch.xpu.ComplexFloatStorage
|
47 |
+
torch.cuda.Tuple = torch.xpu.Tuple
|
48 |
+
torch.cuda.streams = torch.xpu.streams
|
49 |
+
torch.cuda._lazy_new = torch.xpu._lazy_new
|
50 |
+
torch.cuda.FloatStorage = torch.xpu.FloatStorage
|
51 |
+
torch.cuda.Any = torch.xpu.Any
|
52 |
+
torch.cuda.__doc__ = torch.xpu.__doc__
|
53 |
+
torch.cuda.default_generators = torch.xpu.default_generators
|
54 |
+
torch.cuda.HalfTensor = torch.xpu.HalfTensor
|
55 |
+
torch.cuda._get_device_index = torch.xpu._get_device_index
|
56 |
+
torch.cuda.__path__ = torch.xpu.__path__
|
57 |
+
torch.cuda.Device = torch.xpu.Device
|
58 |
+
torch.cuda.IntTensor = torch.xpu.IntTensor
|
59 |
+
torch.cuda.ByteStorage = torch.xpu.ByteStorage
|
60 |
+
torch.cuda.set_stream = torch.xpu.set_stream
|
61 |
+
torch.cuda.BoolStorage = torch.xpu.BoolStorage
|
62 |
+
torch.cuda.os = torch.xpu.os
|
63 |
+
torch.cuda.torch = torch.xpu.torch
|
64 |
+
torch.cuda.BFloat16Storage = torch.xpu.BFloat16Storage
|
65 |
+
torch.cuda.Union = torch.xpu.Union
|
66 |
+
torch.cuda.DoubleTensor = torch.xpu.DoubleTensor
|
67 |
+
torch.cuda.ShortTensor = torch.xpu.ShortTensor
|
68 |
+
torch.cuda.LongTensor = torch.xpu.LongTensor
|
69 |
+
torch.cuda.IntStorage = torch.xpu.IntStorage
|
70 |
+
torch.cuda.LongStorage = torch.xpu.LongStorage
|
71 |
+
torch.cuda.__annotations__ = torch.xpu.__annotations__
|
72 |
+
torch.cuda.__package__ = torch.xpu.__package__
|
73 |
+
torch.cuda.__builtins__ = torch.xpu.__builtins__
|
74 |
+
torch.cuda.CharTensor = torch.xpu.CharTensor
|
75 |
+
torch.cuda.List = torch.xpu.List
|
76 |
+
torch.cuda._lazy_init = torch.xpu._lazy_init
|
77 |
+
torch.cuda.BFloat16Tensor = torch.xpu.BFloat16Tensor
|
78 |
+
torch.cuda.DoubleStorage = torch.xpu.DoubleStorage
|
79 |
+
torch.cuda.ByteTensor = torch.xpu.ByteTensor
|
80 |
+
torch.cuda.StreamContext = torch.xpu.StreamContext
|
81 |
+
torch.cuda.ComplexDoubleStorage = torch.xpu.ComplexDoubleStorage
|
82 |
+
torch.cuda.ShortStorage = torch.xpu.ShortStorage
|
83 |
+
torch.cuda._lazy_call = torch.xpu._lazy_call
|
84 |
+
torch.cuda.HalfStorage = torch.xpu.HalfStorage
|
85 |
+
torch.cuda.random = torch.xpu.random
|
86 |
+
torch.cuda._device = torch.xpu._device
|
87 |
+
torch.cuda.classproperty = torch.xpu.classproperty
|
88 |
+
torch.cuda.__name__ = torch.xpu.__name__
|
89 |
+
torch.cuda._device_t = torch.xpu._device_t
|
90 |
+
torch.cuda.warnings = torch.xpu.warnings
|
91 |
+
torch.cuda.__spec__ = torch.xpu.__spec__
|
92 |
+
torch.cuda.BoolTensor = torch.xpu.BoolTensor
|
93 |
+
torch.cuda.CharStorage = torch.xpu.CharStorage
|
94 |
+
torch.cuda.__file__ = torch.xpu.__file__
|
95 |
+
torch.cuda._is_in_bad_fork = torch.xpu.lazy_init._is_in_bad_fork
|
96 |
+
# torch.cuda.is_current_stream_capturing = torch.xpu.is_current_stream_capturing
|
97 |
+
|
98 |
+
# Memory:
|
99 |
+
torch.cuda.memory = torch.xpu.memory
|
100 |
+
if "linux" in sys.platform and "WSL2" in os.popen("uname -a").read():
|
101 |
+
torch.xpu.empty_cache = lambda: None
|
102 |
+
torch.cuda.empty_cache = torch.xpu.empty_cache
|
103 |
+
torch.cuda.memory_stats = torch.xpu.memory_stats
|
104 |
+
torch.cuda.memory_summary = torch.xpu.memory_summary
|
105 |
+
torch.cuda.memory_snapshot = torch.xpu.memory_snapshot
|
106 |
+
torch.cuda.memory_allocated = torch.xpu.memory_allocated
|
107 |
+
torch.cuda.max_memory_allocated = torch.xpu.max_memory_allocated
|
108 |
+
torch.cuda.memory_reserved = torch.xpu.memory_reserved
|
109 |
+
torch.cuda.memory_cached = torch.xpu.memory_reserved
|
110 |
+
torch.cuda.max_memory_reserved = torch.xpu.max_memory_reserved
|
111 |
+
torch.cuda.max_memory_cached = torch.xpu.max_memory_reserved
|
112 |
+
torch.cuda.reset_peak_memory_stats = torch.xpu.reset_peak_memory_stats
|
113 |
+
torch.cuda.reset_max_memory_cached = torch.xpu.reset_peak_memory_stats
|
114 |
+
torch.cuda.reset_max_memory_allocated = torch.xpu.reset_peak_memory_stats
|
115 |
+
torch.cuda.memory_stats_as_nested_dict = torch.xpu.memory_stats_as_nested_dict
|
116 |
+
torch.cuda.reset_accumulated_memory_stats = (
|
117 |
+
torch.xpu.reset_accumulated_memory_stats
|
118 |
+
)
|
119 |
+
|
120 |
+
# RNG:
|
121 |
+
torch.cuda.get_rng_state = torch.xpu.get_rng_state
|
122 |
+
torch.cuda.get_rng_state_all = torch.xpu.get_rng_state_all
|
123 |
+
torch.cuda.set_rng_state = torch.xpu.set_rng_state
|
124 |
+
torch.cuda.set_rng_state_all = torch.xpu.set_rng_state_all
|
125 |
+
torch.cuda.manual_seed = torch.xpu.manual_seed
|
126 |
+
torch.cuda.manual_seed_all = torch.xpu.manual_seed_all
|
127 |
+
torch.cuda.seed = torch.xpu.seed
|
128 |
+
torch.cuda.seed_all = torch.xpu.seed_all
|
129 |
+
torch.cuda.initial_seed = torch.xpu.initial_seed
|
130 |
+
|
131 |
+
# AMP:
|
132 |
+
torch.cuda.amp = torch.xpu.amp
|
133 |
+
if not hasattr(torch.cuda.amp, "common"):
|
134 |
+
torch.cuda.amp.common = contextlib.nullcontext()
|
135 |
+
torch.cuda.amp.common.amp_definitely_not_available = lambda: False
|
136 |
+
try:
|
137 |
+
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
|
138 |
+
except Exception: # pylint: disable=broad-exception-caught
|
139 |
+
try:
|
140 |
+
from .gradscaler import (
|
141 |
+
gradscaler_init,
|
142 |
+
) # pylint: disable=import-outside-toplevel, import-error
|
143 |
+
|
144 |
+
gradscaler_init()
|
145 |
+
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
|
146 |
+
except Exception: # pylint: disable=broad-exception-caught
|
147 |
+
torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
|
148 |
+
|
149 |
+
# C
|
150 |
+
torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentStream
|
151 |
+
ipex._C._DeviceProperties.major = 2023
|
152 |
+
ipex._C._DeviceProperties.minor = 2
|
153 |
+
|
154 |
+
# Fix functions with ipex:
|
155 |
+
torch.cuda.mem_get_info = lambda device=None: [
|
156 |
+
(
|
157 |
+
torch.xpu.get_device_properties(device).total_memory
|
158 |
+
- torch.xpu.memory_allocated(device)
|
159 |
+
),
|
160 |
+
torch.xpu.get_device_properties(device).total_memory,
|
161 |
+
]
|
162 |
+
torch._utils._get_available_device_type = lambda: "xpu"
|
163 |
+
torch.has_cuda = True
|
164 |
+
torch.cuda.has_half = True
|
165 |
+
torch.cuda.is_bf16_supported = lambda *args, **kwargs: True
|
166 |
+
torch.cuda.is_fp16_supported = lambda *args, **kwargs: True
|
167 |
+
torch.version.cuda = "11.7"
|
168 |
+
torch.cuda.get_device_capability = lambda *args, **kwargs: [11, 7]
|
169 |
+
torch.cuda.get_device_properties.major = 11
|
170 |
+
torch.cuda.get_device_properties.minor = 7
|
171 |
+
torch.cuda.ipc_collect = lambda *args, **kwargs: None
|
172 |
+
torch.cuda.utilization = lambda *args, **kwargs: 0
|
173 |
+
if hasattr(torch.xpu, "getDeviceIdListForCard"):
|
174 |
+
torch.cuda.getDeviceIdListForCard = torch.xpu.getDeviceIdListForCard
|
175 |
+
torch.cuda.get_device_id_list_per_card = torch.xpu.getDeviceIdListForCard
|
176 |
+
else:
|
177 |
+
torch.cuda.getDeviceIdListForCard = torch.xpu.get_device_id_list_per_card
|
178 |
+
torch.cuda.get_device_id_list_per_card = (
|
179 |
+
torch.xpu.get_device_id_list_per_card
|
180 |
+
)
|
181 |
+
|
182 |
+
ipex_hijacks()
|
183 |
+
attention_init()
|
184 |
+
try:
|
185 |
+
from .diffusers import ipex_diffusers
|
186 |
+
|
187 |
+
ipex_diffusers()
|
188 |
+
except Exception: # pylint: disable=broad-exception-caught
|
189 |
+
pass
|
190 |
+
except Exception as e:
|
191 |
+
return False, e
|
192 |
+
return True, None
|
rvc/jit/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .jit import load_inputs, get_jit_model, export_jit_model, save_pickle
|
rvc/jit/jit.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from io import BytesIO
|
3 |
+
from collections import OrderedDict
|
4 |
+
import os
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def load_pickle(path: str):
|
10 |
+
with open(path, "rb") as f:
|
11 |
+
return pickle.load(f)
|
12 |
+
|
13 |
+
|
14 |
+
def save_pickle(ckpt: dict, save_path: str):
|
15 |
+
with open(save_path, "wb") as f:
|
16 |
+
pickle.dump(ckpt, f)
|
17 |
+
|
18 |
+
|
19 |
+
def load_inputs(path: torch.serialization.FILE_LIKE, device: str, is_half=False):
|
20 |
+
parm = torch.load(path, map_location=torch.device("cpu"))
|
21 |
+
for key in parm.keys():
|
22 |
+
parm[key] = parm[key].to(device)
|
23 |
+
if is_half and parm[key].dtype == torch.float32:
|
24 |
+
parm[key] = parm[key].half()
|
25 |
+
elif not is_half and parm[key].dtype == torch.float16:
|
26 |
+
parm[key] = parm[key].float()
|
27 |
+
return parm
|
28 |
+
|
29 |
+
|
30 |
+
def export_jit_model(
|
31 |
+
model: torch.nn.Module,
|
32 |
+
mode: str = "trace",
|
33 |
+
inputs: dict = None,
|
34 |
+
device=torch.device("cpu"),
|
35 |
+
is_half: bool = False,
|
36 |
+
) -> dict:
|
37 |
+
model = model.half() if is_half else model.float()
|
38 |
+
model.eval()
|
39 |
+
if mode == "trace":
|
40 |
+
assert inputs is not None
|
41 |
+
model_jit = torch.jit.trace(model, example_kwarg_inputs=inputs)
|
42 |
+
elif mode == "script":
|
43 |
+
model_jit = torch.jit.script(model)
|
44 |
+
model_jit.to(device)
|
45 |
+
model_jit = model_jit.half() if is_half else model_jit.float()
|
46 |
+
buffer = BytesIO()
|
47 |
+
# model_jit=model_jit.cpu()
|
48 |
+
torch.jit.save(model_jit, buffer)
|
49 |
+
del model_jit
|
50 |
+
cpt = OrderedDict()
|
51 |
+
cpt["model"] = buffer.getvalue()
|
52 |
+
cpt["is_half"] = is_half
|
53 |
+
return cpt
|
54 |
+
|
55 |
+
|
56 |
+
def get_jit_model(model_path: str, is_half: bool, device: str, exporter):
|
57 |
+
jit_model_path = model_path.rstrip(".pth")
|
58 |
+
jit_model_path += ".half.jit" if is_half else ".jit"
|
59 |
+
ckpt = None
|
60 |
+
|
61 |
+
if os.path.exists(jit_model_path):
|
62 |
+
ckpt = load_pickle(jit_model_path)
|
63 |
+
model_device = ckpt["device"]
|
64 |
+
if model_device != str(device):
|
65 |
+
del ckpt
|
66 |
+
ckpt = None
|
67 |
+
|
68 |
+
if ckpt is None:
|
69 |
+
ckpt = exporter(
|
70 |
+
model_path=model_path,
|
71 |
+
mode="script",
|
72 |
+
inputs_path=None,
|
73 |
+
save_path=jit_model_path,
|
74 |
+
device=device,
|
75 |
+
is_half=is_half,
|
76 |
+
)
|
77 |
+
|
78 |
+
return ckpt
|
rvc/layers/__init__.py
ADDED
File without changes
|
rvc/layers/attentions.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class MultiHeadAttention(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
channels: int,
|
13 |
+
out_channels: int,
|
14 |
+
n_heads: int,
|
15 |
+
p_dropout: float = 0.0,
|
16 |
+
window_size: Optional[int] = None,
|
17 |
+
heads_share: bool = True,
|
18 |
+
block_length: Optional[int] = None,
|
19 |
+
proximal_bias: bool = False,
|
20 |
+
proximal_init: bool = False,
|
21 |
+
):
|
22 |
+
super(MultiHeadAttention, self).__init__()
|
23 |
+
assert channels % n_heads == 0
|
24 |
+
|
25 |
+
self.channels = channels
|
26 |
+
self.out_channels = out_channels
|
27 |
+
self.n_heads = n_heads
|
28 |
+
self.p_dropout = p_dropout
|
29 |
+
self.window_size = window_size
|
30 |
+
self.heads_share = heads_share
|
31 |
+
self.block_length = block_length
|
32 |
+
self.proximal_bias = proximal_bias
|
33 |
+
self.proximal_init = proximal_init
|
34 |
+
self.attn = None
|
35 |
+
|
36 |
+
self.k_channels = channels // n_heads
|
37 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
38 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
39 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
40 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
41 |
+
self.drop = nn.Dropout(p_dropout)
|
42 |
+
|
43 |
+
if window_size is not None:
|
44 |
+
n_heads_rel = 1 if heads_share else n_heads
|
45 |
+
rel_stddev = self.k_channels**-0.5
|
46 |
+
self.emb_rel_k = nn.Parameter(
|
47 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
48 |
+
* rel_stddev
|
49 |
+
)
|
50 |
+
self.emb_rel_v = nn.Parameter(
|
51 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
52 |
+
* rel_stddev
|
53 |
+
)
|
54 |
+
|
55 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
56 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
57 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
58 |
+
if proximal_init:
|
59 |
+
with torch.no_grad():
|
60 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
61 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
62 |
+
|
63 |
+
def __call__(
|
64 |
+
self,
|
65 |
+
x: torch.Tensor,
|
66 |
+
c: torch.Tensor,
|
67 |
+
attn_mask: Optional[torch.Tensor] = None,
|
68 |
+
) -> torch.Tensor:
|
69 |
+
return super().__call__(x, c, attn_mask=attn_mask)
|
70 |
+
|
71 |
+
def forward(
|
72 |
+
self,
|
73 |
+
x: torch.Tensor,
|
74 |
+
c: torch.Tensor,
|
75 |
+
attn_mask: Optional[torch.Tensor] = None,
|
76 |
+
) -> torch.Tensor:
|
77 |
+
q = self.conv_q(x)
|
78 |
+
k = self.conv_k(c)
|
79 |
+
v = self.conv_v(c)
|
80 |
+
|
81 |
+
x, _ = self._attention(q, k, v, mask=attn_mask)
|
82 |
+
|
83 |
+
x = self.conv_o(x)
|
84 |
+
return x
|
85 |
+
|
86 |
+
def _attention(
|
87 |
+
self,
|
88 |
+
query: torch.Tensor,
|
89 |
+
key: torch.Tensor,
|
90 |
+
value: torch.Tensor,
|
91 |
+
mask: Optional[torch.Tensor] = None,
|
92 |
+
):
|
93 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
94 |
+
b, d, t_s = key.size()
|
95 |
+
t_t = query.size(2)
|
96 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
97 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
98 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
99 |
+
|
100 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
101 |
+
if self.window_size is not None:
|
102 |
+
assert (
|
103 |
+
t_s == t_t
|
104 |
+
), "Relative attention is only available for self-attention."
|
105 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
106 |
+
rel_logits = self._matmul_with_relative_keys(
|
107 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
108 |
+
)
|
109 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
110 |
+
scores = scores + scores_local
|
111 |
+
if self.proximal_bias:
|
112 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
113 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
114 |
+
device=scores.device, dtype=scores.dtype
|
115 |
+
)
|
116 |
+
if mask is not None:
|
117 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
118 |
+
if self.block_length is not None:
|
119 |
+
assert (
|
120 |
+
t_s == t_t
|
121 |
+
), "Local attention is only available for self-attention."
|
122 |
+
block_mask = (
|
123 |
+
torch.ones_like(scores)
|
124 |
+
.triu(-self.block_length)
|
125 |
+
.tril(self.block_length)
|
126 |
+
)
|
127 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
128 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
129 |
+
p_attn = self.drop(p_attn)
|
130 |
+
output = torch.matmul(p_attn, value)
|
131 |
+
if self.window_size is not None:
|
132 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
133 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
134 |
+
self.emb_rel_v, t_s
|
135 |
+
)
|
136 |
+
output = output + self._matmul_with_relative_values(
|
137 |
+
relative_weights, value_relative_embeddings
|
138 |
+
)
|
139 |
+
output = (
|
140 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
141 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
142 |
+
return output, p_attn
|
143 |
+
|
144 |
+
def _matmul_with_relative_values(self, x, y):
|
145 |
+
"""
|
146 |
+
x: [b, h, l, m]
|
147 |
+
y: [h or 1, m, d]
|
148 |
+
ret: [b, h, l, d]
|
149 |
+
"""
|
150 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
151 |
+
return ret
|
152 |
+
|
153 |
+
def _matmul_with_relative_keys(self, x, y):
|
154 |
+
"""
|
155 |
+
x: [b, h, l, d]
|
156 |
+
y: [h or 1, m, d]
|
157 |
+
ret: [b, h, l, m]
|
158 |
+
"""
|
159 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
160 |
+
return ret
|
161 |
+
|
162 |
+
def _get_relative_embeddings(self, relative_embeddings, length: int):
|
163 |
+
# max_relative_position = 2 * self.window_size + 1
|
164 |
+
# Pad first before slice to avoid using cond ops.
|
165 |
+
pad_length: int = max(length - (self.window_size + 1), 0)
|
166 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
167 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
168 |
+
if pad_length > 0:
|
169 |
+
padded_relative_embeddings = F.pad(
|
170 |
+
relative_embeddings,
|
171 |
+
[0, 0, pad_length, pad_length, 0, 0],
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
padded_relative_embeddings = relative_embeddings
|
175 |
+
used_relative_embeddings = padded_relative_embeddings[
|
176 |
+
:, slice_start_position:slice_end_position
|
177 |
+
]
|
178 |
+
return used_relative_embeddings
|
179 |
+
|
180 |
+
def _relative_position_to_absolute_position(self, x):
|
181 |
+
"""
|
182 |
+
x: [b, h, l, 2*l-1]
|
183 |
+
ret: [b, h, l, l]
|
184 |
+
"""
|
185 |
+
batch, heads, length, _ = x.size()
|
186 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
187 |
+
x = F.pad(
|
188 |
+
x,
|
189 |
+
[0, 1, 0, 0, 0, 0, 0, 0],
|
190 |
+
)
|
191 |
+
|
192 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
193 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
194 |
+
x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0])
|
195 |
+
|
196 |
+
# Reshape and slice out the padded elements.
|
197 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
198 |
+
:, :, :length, length - 1 :
|
199 |
+
]
|
200 |
+
return x_final
|
201 |
+
|
202 |
+
def _absolute_position_to_relative_position(self, x):
|
203 |
+
"""
|
204 |
+
x: [b, h, l, l]
|
205 |
+
ret: [b, h, l, 2*l-1]
|
206 |
+
"""
|
207 |
+
batch, heads, length, _ = x.size()
|
208 |
+
# padd along column
|
209 |
+
x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0])
|
210 |
+
x_flat = x.view([batch, heads, (length**2) + (length * (length - 1))])
|
211 |
+
# add 0's in the beginning that will skew the elements after reshape
|
212 |
+
x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0])
|
213 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
214 |
+
return x_final
|
215 |
+
|
216 |
+
def _attention_bias_proximal(self, length: int):
|
217 |
+
"""Bias for self-attention to encourage attention to close positions.
|
218 |
+
Args:
|
219 |
+
length: an integer scalar.
|
220 |
+
Returns:
|
221 |
+
a Tensor with shape [1, 1, length, length]
|
222 |
+
"""
|
223 |
+
r = torch.arange(length, dtype=torch.float32)
|
224 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
225 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
226 |
+
|
227 |
+
|
228 |
+
class FFN(nn.Module):
|
229 |
+
"""
|
230 |
+
Feed-Forward Network
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(
|
234 |
+
self,
|
235 |
+
in_channels: int,
|
236 |
+
out_channels: int,
|
237 |
+
filter_channels: int,
|
238 |
+
kernel_size: int,
|
239 |
+
p_dropout: float = 0.0,
|
240 |
+
activation: Optional[str] = None,
|
241 |
+
causal: bool = False,
|
242 |
+
):
|
243 |
+
super(FFN, self).__init__()
|
244 |
+
self.in_channels = in_channels
|
245 |
+
self.out_channels = out_channels
|
246 |
+
self.filter_channels = filter_channels
|
247 |
+
self.kernel_size = kernel_size
|
248 |
+
self.p_dropout = p_dropout
|
249 |
+
self.activation = activation
|
250 |
+
self.causal = causal
|
251 |
+
self.is_activation = True if activation == "gelu" else False
|
252 |
+
|
253 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
254 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
255 |
+
self.drop = nn.Dropout(p_dropout)
|
256 |
+
|
257 |
+
def __call__(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
258 |
+
return super().__call__(x, x_mask)
|
259 |
+
|
260 |
+
def forward(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
261 |
+
x = self.conv_1(self._padding(x, x_mask))
|
262 |
+
if self.is_activation:
|
263 |
+
x = x * torch.sigmoid(1.702 * x)
|
264 |
+
else:
|
265 |
+
x = torch.relu(x)
|
266 |
+
x = self.drop(x)
|
267 |
+
|
268 |
+
x = self.conv_2(self._padding(x, x_mask))
|
269 |
+
return x * x_mask
|
270 |
+
|
271 |
+
def _padding(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
272 |
+
if self.causal:
|
273 |
+
return self._causal_padding(x * x_mask)
|
274 |
+
return self._same_padding(x * x_mask)
|
275 |
+
|
276 |
+
def _causal_padding(self, x):
|
277 |
+
if self.kernel_size == 1:
|
278 |
+
return x
|
279 |
+
pad_l: int = self.kernel_size - 1
|
280 |
+
pad_r: int = 0
|
281 |
+
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
282 |
+
x = F.pad(x, [pad_l, pad_r, 0, 0, 0, 0])
|
283 |
+
return x
|
284 |
+
|
285 |
+
def _same_padding(self, x):
|
286 |
+
if self.kernel_size == 1:
|
287 |
+
return x
|
288 |
+
pad_l: int = (self.kernel_size - 1) // 2
|
289 |
+
pad_r: int = self.kernel_size // 2
|
290 |
+
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
291 |
+
x = F.pad(x, [pad_l, pad_r, 0, 0, 0, 0])
|
292 |
+
return x
|
rvc/layers/discriminators.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Conv1d, Conv2d
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torch.nn.utils import spectral_norm, weight_norm
|
8 |
+
|
9 |
+
from .residuals import LRELU_SLOPE
|
10 |
+
from .utils import get_padding
|
11 |
+
|
12 |
+
|
13 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
14 |
+
"""
|
15 |
+
version: 'v1' or 'v2'
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self, version: str, use_spectral_norm: bool = False, has_xpu: bool = False
|
20 |
+
):
|
21 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
22 |
+
periods = (
|
23 |
+
(2, 3, 5, 7, 11, 17) if version == "v1" else (2, 3, 5, 7, 11, 17, 23, 37)
|
24 |
+
)
|
25 |
+
|
26 |
+
self.discriminators = nn.ModuleList(
|
27 |
+
[
|
28 |
+
DiscriminatorS(use_spectral_norm=use_spectral_norm),
|
29 |
+
*(
|
30 |
+
DiscriminatorP(
|
31 |
+
i, use_spectral_norm=use_spectral_norm, has_xpu=has_xpu
|
32 |
+
)
|
33 |
+
for i in periods
|
34 |
+
),
|
35 |
+
]
|
36 |
+
)
|
37 |
+
|
38 |
+
def __call__(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
|
39 |
+
List[torch.Tensor],
|
40 |
+
List[torch.Tensor],
|
41 |
+
List[List[torch.Tensor]],
|
42 |
+
List[List[torch.Tensor]],
|
43 |
+
]:
|
44 |
+
return super().__call__(y, y_hat)
|
45 |
+
|
46 |
+
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
|
47 |
+
List[torch.Tensor],
|
48 |
+
List[torch.Tensor],
|
49 |
+
List[List[torch.Tensor]],
|
50 |
+
List[List[torch.Tensor]],
|
51 |
+
]:
|
52 |
+
y_d_rs = []
|
53 |
+
y_d_gs = []
|
54 |
+
fmap_rs = []
|
55 |
+
fmap_gs = []
|
56 |
+
|
57 |
+
for d in self.discriminators:
|
58 |
+
y_d_r, fmap_r = d(y)
|
59 |
+
y_d_g, fmap_g = d(y_hat)
|
60 |
+
y_d_rs.append(y_d_r)
|
61 |
+
y_d_gs.append(y_d_g)
|
62 |
+
fmap_rs.append(fmap_r)
|
63 |
+
fmap_gs.append(fmap_g)
|
64 |
+
|
65 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
66 |
+
|
67 |
+
|
68 |
+
class DiscriminatorS(torch.nn.Module):
|
69 |
+
def __init__(self, use_spectral_norm: bool = False):
|
70 |
+
super(DiscriminatorS, self).__init__()
|
71 |
+
norm_f = spectral_norm if use_spectral_norm else weight_norm
|
72 |
+
|
73 |
+
self.convs = nn.ModuleList(
|
74 |
+
[
|
75 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
76 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
77 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
78 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
79 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
80 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
81 |
+
]
|
82 |
+
)
|
83 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
84 |
+
|
85 |
+
def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
86 |
+
return super().__call__(x)
|
87 |
+
|
88 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
89 |
+
fmap = []
|
90 |
+
|
91 |
+
for l in self.convs:
|
92 |
+
x = l(x)
|
93 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
94 |
+
fmap.append(x)
|
95 |
+
|
96 |
+
x = self.conv_post(x)
|
97 |
+
fmap.append(x)
|
98 |
+
x = torch.flatten(x, 1, -1)
|
99 |
+
|
100 |
+
return x, fmap
|
101 |
+
|
102 |
+
|
103 |
+
class DiscriminatorP(torch.nn.Module):
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
period: int,
|
107 |
+
kernel_size: int = 5,
|
108 |
+
stride: int = 3,
|
109 |
+
use_spectral_norm: bool = False,
|
110 |
+
has_xpu: bool = False,
|
111 |
+
):
|
112 |
+
super(DiscriminatorP, self).__init__()
|
113 |
+
self.period = period
|
114 |
+
self.has_xpu = has_xpu
|
115 |
+
norm_f = spectral_norm if use_spectral_norm else weight_norm
|
116 |
+
sequence = (1, 32, 128, 512, 1024)
|
117 |
+
convs_padding = (get_padding(kernel_size, 1), 0)
|
118 |
+
|
119 |
+
self.convs = nn.ModuleList()
|
120 |
+
for i in range(len(sequence) - 1):
|
121 |
+
self.convs.append(
|
122 |
+
norm_f(
|
123 |
+
Conv2d(
|
124 |
+
sequence[i],
|
125 |
+
sequence[i + 1],
|
126 |
+
(kernel_size, 1),
|
127 |
+
(stride, 1),
|
128 |
+
padding=convs_padding,
|
129 |
+
)
|
130 |
+
)
|
131 |
+
)
|
132 |
+
self.convs.append(
|
133 |
+
norm_f(
|
134 |
+
Conv2d(
|
135 |
+
1024,
|
136 |
+
1024,
|
137 |
+
(kernel_size, 1),
|
138 |
+
1,
|
139 |
+
padding=convs_padding,
|
140 |
+
)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
144 |
+
|
145 |
+
def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
146 |
+
return super().__call__(x)
|
147 |
+
|
148 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
149 |
+
fmap = []
|
150 |
+
|
151 |
+
# 1d to 2d
|
152 |
+
b, c, t = x.shape
|
153 |
+
if t % self.period != 0: # pad first
|
154 |
+
n_pad = self.period - (t % self.period)
|
155 |
+
if self.has_xpu and x.dtype == torch.bfloat16:
|
156 |
+
x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(
|
157 |
+
dtype=torch.bfloat16
|
158 |
+
)
|
159 |
+
else:
|
160 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
161 |
+
t = t + n_pad
|
162 |
+
x = x.view(b, c, t // self.period, self.period)
|
163 |
+
|
164 |
+
for l in self.convs:
|
165 |
+
x = l(x)
|
166 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
167 |
+
fmap.append(x)
|
168 |
+
x = self.conv_post(x)
|
169 |
+
fmap.append(x)
|
170 |
+
x = torch.flatten(x, 1, -1)
|
171 |
+
|
172 |
+
return x, fmap
|
rvc/layers/encoders.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Tuple, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
from .attentions import MultiHeadAttention, FFN
|
8 |
+
from .norms import LayerNorm, WN
|
9 |
+
from .utils import sequence_mask
|
10 |
+
|
11 |
+
|
12 |
+
class Encoder(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_channels: int,
|
16 |
+
filter_channels: int,
|
17 |
+
n_heads: int,
|
18 |
+
n_layers: int,
|
19 |
+
kernel_size: int = 1,
|
20 |
+
p_dropout: float = 0.0,
|
21 |
+
window_size: int = 10,
|
22 |
+
):
|
23 |
+
super(Encoder, self).__init__()
|
24 |
+
|
25 |
+
self.hidden_channels = hidden_channels
|
26 |
+
self.filter_channels = filter_channels
|
27 |
+
self.n_heads = n_heads
|
28 |
+
self.n_layers = n_layers
|
29 |
+
self.kernel_size = kernel_size
|
30 |
+
self.p_dropout = p_dropout
|
31 |
+
self.window_size = window_size
|
32 |
+
|
33 |
+
self.drop = nn.Dropout(p_dropout)
|
34 |
+
self.attn_layers = nn.ModuleList()
|
35 |
+
self.norm_layers_1 = nn.ModuleList()
|
36 |
+
self.ffn_layers = nn.ModuleList()
|
37 |
+
self.norm_layers_2 = nn.ModuleList()
|
38 |
+
|
39 |
+
for _ in range(self.n_layers):
|
40 |
+
self.attn_layers.append(
|
41 |
+
MultiHeadAttention(
|
42 |
+
hidden_channels,
|
43 |
+
hidden_channels,
|
44 |
+
n_heads,
|
45 |
+
p_dropout=p_dropout,
|
46 |
+
window_size=window_size,
|
47 |
+
)
|
48 |
+
)
|
49 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
50 |
+
self.ffn_layers.append(
|
51 |
+
FFN(
|
52 |
+
hidden_channels,
|
53 |
+
hidden_channels,
|
54 |
+
filter_channels,
|
55 |
+
kernel_size,
|
56 |
+
p_dropout=p_dropout,
|
57 |
+
)
|
58 |
+
)
|
59 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
60 |
+
|
61 |
+
def __call__(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
62 |
+
return super().__call__(x, x_mask)
|
63 |
+
|
64 |
+
def forward(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
65 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
66 |
+
x = x * x_mask
|
67 |
+
for attn, norm1, ffn, norm2 in zip(
|
68 |
+
self.attn_layers,
|
69 |
+
self.norm_layers_1,
|
70 |
+
self.ffn_layers,
|
71 |
+
self.norm_layers_2,
|
72 |
+
):
|
73 |
+
y = attn(x, x, attn_mask)
|
74 |
+
y = self.drop(y)
|
75 |
+
x = norm1(x + y)
|
76 |
+
|
77 |
+
y = ffn(x, x_mask)
|
78 |
+
y = self.drop(y)
|
79 |
+
x = norm2(x + y)
|
80 |
+
x = x * x_mask
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
class TextEncoder(nn.Module):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
in_channels: int,
|
88 |
+
out_channels: int,
|
89 |
+
hidden_channels: int,
|
90 |
+
filter_channels: int,
|
91 |
+
n_heads: int,
|
92 |
+
n_layers: int,
|
93 |
+
kernel_size: int,
|
94 |
+
p_dropout: float,
|
95 |
+
f0: bool = True,
|
96 |
+
):
|
97 |
+
super(TextEncoder, self).__init__()
|
98 |
+
|
99 |
+
self.out_channels = out_channels
|
100 |
+
self.hidden_channels = hidden_channels
|
101 |
+
self.filter_channels = filter_channels
|
102 |
+
self.n_heads = n_heads
|
103 |
+
self.n_layers = n_layers
|
104 |
+
self.kernel_size = kernel_size
|
105 |
+
self.p_dropout = float(p_dropout)
|
106 |
+
|
107 |
+
self.emb_phone = nn.Linear(in_channels, hidden_channels)
|
108 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
109 |
+
if f0 == True:
|
110 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
111 |
+
self.encoder = Encoder(
|
112 |
+
hidden_channels,
|
113 |
+
filter_channels,
|
114 |
+
n_heads,
|
115 |
+
n_layers,
|
116 |
+
kernel_size,
|
117 |
+
float(p_dropout),
|
118 |
+
)
|
119 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
120 |
+
|
121 |
+
def __call__(
|
122 |
+
self,
|
123 |
+
phone: torch.Tensor,
|
124 |
+
pitch: torch.Tensor,
|
125 |
+
lengths: torch.Tensor,
|
126 |
+
skip_head: Optional[int] = None,
|
127 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
128 |
+
return super().__call__(
|
129 |
+
phone,
|
130 |
+
pitch,
|
131 |
+
lengths,
|
132 |
+
skip_head=skip_head,
|
133 |
+
)
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
phone: torch.Tensor,
|
138 |
+
pitch: torch.Tensor,
|
139 |
+
lengths: torch.Tensor,
|
140 |
+
skip_head: Optional[int] = None,
|
141 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
142 |
+
x = self.emb_phone(phone)
|
143 |
+
if pitch is not None:
|
144 |
+
x += self.emb_pitch(pitch)
|
145 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
146 |
+
x = self.lrelu(x)
|
147 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
148 |
+
x_mask = torch.unsqueeze(
|
149 |
+
sequence_mask(lengths, x.size(2)),
|
150 |
+
1,
|
151 |
+
).to(x.dtype)
|
152 |
+
x = self.encoder(x * x_mask, x_mask)
|
153 |
+
if skip_head is not None:
|
154 |
+
head = int(skip_head)
|
155 |
+
x = x[:, :, head:]
|
156 |
+
x_mask = x_mask[:, :, head:]
|
157 |
+
stats: torch.Tensor = self.proj(x) * x_mask
|
158 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
159 |
+
return m, logs, x_mask
|
160 |
+
|
161 |
+
|
162 |
+
class PosteriorEncoder(nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
in_channels: int,
|
166 |
+
out_channels: int,
|
167 |
+
hidden_channels: int,
|
168 |
+
kernel_size: int,
|
169 |
+
dilation_rate: int,
|
170 |
+
n_layers: int,
|
171 |
+
gin_channels=0,
|
172 |
+
):
|
173 |
+
super(PosteriorEncoder, self).__init__()
|
174 |
+
self.in_channels = in_channels
|
175 |
+
self.out_channels = out_channels
|
176 |
+
self.hidden_channels = hidden_channels
|
177 |
+
self.kernel_size = kernel_size
|
178 |
+
self.dilation_rate = dilation_rate
|
179 |
+
self.n_layers = n_layers
|
180 |
+
self.gin_channels = gin_channels
|
181 |
+
|
182 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
183 |
+
self.enc = WN(
|
184 |
+
hidden_channels,
|
185 |
+
kernel_size,
|
186 |
+
dilation_rate,
|
187 |
+
n_layers,
|
188 |
+
gin_channels=gin_channels,
|
189 |
+
)
|
190 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
191 |
+
|
192 |
+
def __call__(
|
193 |
+
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
|
194 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
195 |
+
return super().__call__(x, x_lengths, g=g)
|
196 |
+
|
197 |
+
def forward(
|
198 |
+
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
|
199 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
200 |
+
x_mask = torch.unsqueeze(
|
201 |
+
sequence_mask(x_lengths, x.size(2)),
|
202 |
+
1,
|
203 |
+
).to(x.dtype)
|
204 |
+
x = self.pre(x) * x_mask
|
205 |
+
x = self.enc(x, x_mask, g=g)
|
206 |
+
stats = self.proj(x) * x_mask
|
207 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
208 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
209 |
+
return z, m, logs, x_mask
|
210 |
+
|
211 |
+
def remove_weight_norm(self):
|
212 |
+
self.enc.remove_weight_norm()
|
213 |
+
|
214 |
+
def __prepare_scriptable__(self):
|
215 |
+
for hook in self.enc._forward_pre_hooks.values():
|
216 |
+
if (
|
217 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
218 |
+
and hook.__class__.__name__ == "WeightNorm"
|
219 |
+
):
|
220 |
+
torch.nn.utils.remove_weight_norm(self.enc)
|
221 |
+
return self
|
rvc/layers/generators.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, List, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
8 |
+
|
9 |
+
from .residuals import ResBlock1, ResBlock2, LRELU_SLOPE
|
10 |
+
from .utils import call_weight_data_normal_if_Conv
|
11 |
+
|
12 |
+
|
13 |
+
class Generator(torch.nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
initial_channel: int,
|
17 |
+
resblock: str,
|
18 |
+
resblock_kernel_sizes: List[int],
|
19 |
+
resblock_dilation_sizes: List[List[int]],
|
20 |
+
upsample_rates: List[int],
|
21 |
+
upsample_initial_channel: int,
|
22 |
+
upsample_kernel_sizes: List[int],
|
23 |
+
gin_channels: int = 0,
|
24 |
+
):
|
25 |
+
super(Generator, self).__init__()
|
26 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
27 |
+
self.num_upsamples = len(upsample_rates)
|
28 |
+
|
29 |
+
self.conv_pre = Conv1d(
|
30 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
31 |
+
)
|
32 |
+
|
33 |
+
self.ups = nn.ModuleList()
|
34 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
35 |
+
self.ups.append(
|
36 |
+
weight_norm(
|
37 |
+
ConvTranspose1d(
|
38 |
+
upsample_initial_channel // (2**i),
|
39 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
40 |
+
k,
|
41 |
+
u,
|
42 |
+
padding=(k - u) // 2,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
|
47 |
+
self.resblocks = nn.ModuleList()
|
48 |
+
resblock_module = ResBlock1 if resblock == "1" else ResBlock2
|
49 |
+
for i in range(len(self.ups)):
|
50 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
51 |
+
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes):
|
52 |
+
self.resblocks.append(resblock_module(ch, k, d))
|
53 |
+
|
54 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
55 |
+
self.ups.apply(call_weight_data_normal_if_Conv)
|
56 |
+
|
57 |
+
if gin_channels != 0:
|
58 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
59 |
+
|
60 |
+
def __call__(
|
61 |
+
self,
|
62 |
+
x: torch.Tensor,
|
63 |
+
g: Optional[torch.Tensor] = None,
|
64 |
+
n_res: Optional[int] = None,
|
65 |
+
) -> torch.Tensor:
|
66 |
+
return super().__call__(x, g=g, n_res=n_res)
|
67 |
+
|
68 |
+
def forward(
|
69 |
+
self,
|
70 |
+
x: torch.Tensor,
|
71 |
+
g: Optional[torch.Tensor] = None,
|
72 |
+
n_res: Optional[int] = None,
|
73 |
+
):
|
74 |
+
if n_res is not None:
|
75 |
+
n = int(n_res)
|
76 |
+
if n != x.shape[-1]:
|
77 |
+
x = F.interpolate(x, size=n, mode="linear")
|
78 |
+
|
79 |
+
x = self.conv_pre(x)
|
80 |
+
if g is not None:
|
81 |
+
x = x + self.cond(g)
|
82 |
+
|
83 |
+
for i in range(self.num_upsamples):
|
84 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
85 |
+
x = self.ups[i](x)
|
86 |
+
n = i * self.num_kernels
|
87 |
+
xs = self.resblocks[n](x)
|
88 |
+
for j in range(1, self.num_kernels):
|
89 |
+
xs += self.resblocks[n + j](x)
|
90 |
+
x = xs / self.num_kernels
|
91 |
+
|
92 |
+
x = F.leaky_relu(x)
|
93 |
+
x = self.conv_post(x)
|
94 |
+
x = torch.tanh(x)
|
95 |
+
|
96 |
+
return x
|
97 |
+
|
98 |
+
def __prepare_scriptable__(self):
|
99 |
+
for l in self.ups:
|
100 |
+
for hook in l._forward_pre_hooks.values():
|
101 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
102 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
103 |
+
# because of shadowing, so we check the module name directly.
|
104 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
105 |
+
if (
|
106 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
107 |
+
and hook.__class__.__name__ == "WeightNorm"
|
108 |
+
):
|
109 |
+
torch.nn.utils.remove_weight_norm(l)
|
110 |
+
|
111 |
+
for l in self.resblocks:
|
112 |
+
for hook in l._forward_pre_hooks.values():
|
113 |
+
if (
|
114 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
115 |
+
and hook.__class__.__name__ == "WeightNorm"
|
116 |
+
):
|
117 |
+
torch.nn.utils.remove_weight_norm(l)
|
118 |
+
return self
|
119 |
+
|
120 |
+
def remove_weight_norm(self):
|
121 |
+
for l in self.ups:
|
122 |
+
remove_weight_norm(l)
|
123 |
+
for l in self.resblocks:
|
124 |
+
l.remove_weight_norm()
|
125 |
+
|
126 |
+
|
127 |
+
class SineGenerator(torch.nn.Module):
|
128 |
+
"""Definition of sine generator
|
129 |
+
SineGenerator(samp_rate, harmonic_num = 0,
|
130 |
+
sine_amp = 0.1, noise_std = 0.003,
|
131 |
+
voiced_threshold = 0,
|
132 |
+
flag_for_pulse=False)
|
133 |
+
samp_rate: sampling rate in Hz
|
134 |
+
harmonic_num: number of harmonic overtones (default 0)
|
135 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
136 |
+
noise_std: std of Gaussian noise (default 0.003)
|
137 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
138 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
139 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
140 |
+
segment is always sin(torch.pi) or cos(0)
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
samp_rate: int,
|
146 |
+
harmonic_num: int = 0,
|
147 |
+
sine_amp: float = 0.1,
|
148 |
+
noise_std: float = 0.003,
|
149 |
+
voiced_threshold: int = 0,
|
150 |
+
):
|
151 |
+
super(SineGenerator, self).__init__()
|
152 |
+
self.sine_amp = sine_amp
|
153 |
+
self.noise_std = noise_std
|
154 |
+
self.harmonic_num = harmonic_num
|
155 |
+
self.dim = harmonic_num + 1
|
156 |
+
self.sampling_rate = samp_rate
|
157 |
+
self.voiced_threshold = voiced_threshold
|
158 |
+
|
159 |
+
def __call__(
|
160 |
+
self, f0: torch.Tensor, upp: int
|
161 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
162 |
+
return super().__call__(f0, upp)
|
163 |
+
|
164 |
+
def forward(
|
165 |
+
self, f0: torch.Tensor, upp: int
|
166 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
167 |
+
"""sine_tensor, uv = forward(f0)
|
168 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
169 |
+
f0 for unvoiced steps should be 0
|
170 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
171 |
+
output uv: tensor(batchsize=1, length, 1)
|
172 |
+
"""
|
173 |
+
with torch.no_grad():
|
174 |
+
f0 = f0[:, None].transpose(1, 2)
|
175 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
176 |
+
# fundamental component
|
177 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
178 |
+
for idx in range(self.harmonic_num):
|
179 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
180 |
+
idx + 2
|
181 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
182 |
+
rad_values = (
|
183 |
+
f0_buf / self.sampling_rate
|
184 |
+
) % 1 ###%1意味着n_har的乘积无法后处理优化
|
185 |
+
rand_ini = torch.rand(
|
186 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
187 |
+
)
|
188 |
+
rand_ini[:, 0] = 0
|
189 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
190 |
+
tmp_over_one = torch.cumsum(
|
191 |
+
rad_values, 1
|
192 |
+
) # % 1 #####%1意味着后面的cumsum无法再优化
|
193 |
+
tmp_over_one *= upp
|
194 |
+
tmp_over_one: torch.Tensor = F.interpolate(
|
195 |
+
tmp_over_one.transpose(2, 1),
|
196 |
+
scale_factor=float(upp),
|
197 |
+
mode="linear",
|
198 |
+
align_corners=True,
|
199 |
+
).transpose(2, 1)
|
200 |
+
rad_values: torch.Tensor = F.interpolate(
|
201 |
+
rad_values.transpose(2, 1), scale_factor=float(upp), mode="nearest"
|
202 |
+
).transpose(
|
203 |
+
2, 1
|
204 |
+
) #######
|
205 |
+
tmp_over_one %= 1
|
206 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
207 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
208 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
209 |
+
sine_waves = torch.sin(
|
210 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * torch.pi
|
211 |
+
)
|
212 |
+
sine_waves = sine_waves * self.sine_amp
|
213 |
+
uv = self._f02uv(f0)
|
214 |
+
uv: torch.Tensor = F.interpolate(
|
215 |
+
uv.transpose(2, 1), scale_factor=float(upp), mode="nearest"
|
216 |
+
).transpose(2, 1)
|
217 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
218 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
219 |
+
sine_waves = sine_waves * uv + noise
|
220 |
+
return sine_waves, uv, noise
|
221 |
+
|
222 |
+
def _f02uv(self, f0):
|
223 |
+
# generate uv signal
|
224 |
+
uv = torch.ones_like(f0)
|
225 |
+
uv = uv * (f0 > self.voiced_threshold)
|
226 |
+
if uv.device.type == "privateuseone": # for DirectML
|
227 |
+
uv = uv.float()
|
228 |
+
return uv
|
rvc/layers/norms.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from .utils import activate_add_tanh_sigmoid_multiply
|
8 |
+
|
9 |
+
|
10 |
+
class LayerNorm(nn.Module):
|
11 |
+
def __init__(self, channels: int, eps: float = 1e-5):
|
12 |
+
super(LayerNorm, self).__init__()
|
13 |
+
self.channels = channels
|
14 |
+
self.eps = eps
|
15 |
+
|
16 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
17 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
18 |
+
|
19 |
+
def forward(self, x: torch.Tensor):
|
20 |
+
x = x.transpose(1, -1)
|
21 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
22 |
+
return x.transpose(1, -1)
|
23 |
+
|
24 |
+
|
25 |
+
class WN(torch.nn.Module):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
hidden_channels: int,
|
29 |
+
kernel_size: int,
|
30 |
+
dilation_rate: int,
|
31 |
+
n_layers: int,
|
32 |
+
gin_channels: int = 0,
|
33 |
+
p_dropout: int = 0,
|
34 |
+
):
|
35 |
+
super(WN, self).__init__()
|
36 |
+
assert kernel_size % 2 == 1
|
37 |
+
self.hidden_channels = hidden_channels
|
38 |
+
self.kernel_size = (kernel_size,)
|
39 |
+
self.dilation_rate = dilation_rate
|
40 |
+
self.n_layers = n_layers
|
41 |
+
self.gin_channels = gin_channels
|
42 |
+
self.p_dropout = float(p_dropout)
|
43 |
+
|
44 |
+
self.in_layers = torch.nn.ModuleList()
|
45 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
46 |
+
self.drop = nn.Dropout(float(p_dropout))
|
47 |
+
|
48 |
+
if gin_channels != 0:
|
49 |
+
cond_layer = torch.nn.Conv1d(
|
50 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
51 |
+
)
|
52 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
53 |
+
|
54 |
+
for i in range(n_layers):
|
55 |
+
dilation = dilation_rate**i
|
56 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
57 |
+
in_layer = torch.nn.Conv1d(
|
58 |
+
hidden_channels,
|
59 |
+
2 * hidden_channels,
|
60 |
+
kernel_size,
|
61 |
+
dilation=dilation,
|
62 |
+
padding=padding,
|
63 |
+
)
|
64 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
65 |
+
self.in_layers.append(in_layer)
|
66 |
+
|
67 |
+
# last one is not necessary
|
68 |
+
if i < n_layers - 1:
|
69 |
+
res_skip_channels = 2 * hidden_channels
|
70 |
+
else:
|
71 |
+
res_skip_channels = hidden_channels
|
72 |
+
|
73 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
74 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
75 |
+
self.res_skip_layers.append(res_skip_layer)
|
76 |
+
|
77 |
+
def __call__(
|
78 |
+
self,
|
79 |
+
x: torch.Tensor,
|
80 |
+
x_mask: torch.Tensor,
|
81 |
+
g: Optional[torch.Tensor] = None,
|
82 |
+
) -> torch.Tensor:
|
83 |
+
return super().__call__(x, x_mask, g=g)
|
84 |
+
|
85 |
+
def forward(
|
86 |
+
self,
|
87 |
+
x: torch.Tensor,
|
88 |
+
x_mask: torch.Tensor,
|
89 |
+
g: Optional[torch.Tensor] = None,
|
90 |
+
) -> torch.Tensor:
|
91 |
+
output = torch.zeros_like(x)
|
92 |
+
|
93 |
+
if g is not None:
|
94 |
+
g = self.cond_layer(g)
|
95 |
+
|
96 |
+
for i, (in_layer, res_skip_layer) in enumerate(
|
97 |
+
zip(self.in_layers, self.res_skip_layers)
|
98 |
+
):
|
99 |
+
x_in: torch.Tensor = in_layer(x)
|
100 |
+
if g is not None:
|
101 |
+
cond_offset = i * 2 * self.hidden_channels
|
102 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
103 |
+
else:
|
104 |
+
g_l = torch.zeros_like(x_in)
|
105 |
+
|
106 |
+
acts = activate_add_tanh_sigmoid_multiply(x_in, g_l, self.hidden_channels)
|
107 |
+
acts: torch.Tensor = self.drop(acts)
|
108 |
+
|
109 |
+
res_skip_acts: torch.Tensor = res_skip_layer(acts)
|
110 |
+
if i < self.n_layers - 1:
|
111 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
112 |
+
x = (x + res_acts) * x_mask
|
113 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
114 |
+
else:
|
115 |
+
output = output + res_skip_acts
|
116 |
+
return output * x_mask
|
117 |
+
|
118 |
+
def remove_weight_norm(self):
|
119 |
+
if self.gin_channels != 0:
|
120 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
121 |
+
for l in self.in_layers:
|
122 |
+
torch.nn.utils.remove_weight_norm(l)
|
123 |
+
for l in self.res_skip_layers:
|
124 |
+
torch.nn.utils.remove_weight_norm(l)
|
125 |
+
|
126 |
+
def __prepare_scriptable__(self):
|
127 |
+
if self.gin_channels != 0:
|
128 |
+
for hook in self.cond_layer._forward_pre_hooks.values():
|
129 |
+
if (
|
130 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
131 |
+
and hook.__class__.__name__ == "WeightNorm"
|
132 |
+
):
|
133 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
134 |
+
for l in self.in_layers:
|
135 |
+
for hook in l._forward_pre_hooks.values():
|
136 |
+
if (
|
137 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
138 |
+
and hook.__class__.__name__ == "WeightNorm"
|
139 |
+
):
|
140 |
+
torch.nn.utils.remove_weight_norm(l)
|
141 |
+
for l in self.res_skip_layers:
|
142 |
+
for hook in l._forward_pre_hooks.values():
|
143 |
+
if (
|
144 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
145 |
+
and hook.__class__.__name__ == "WeightNorm"
|
146 |
+
):
|
147 |
+
torch.nn.utils.remove_weight_norm(l)
|
148 |
+
return self
|
rvc/layers/nsf.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, List
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
9 |
+
|
10 |
+
from .generators import SineGenerator
|
11 |
+
from .residuals import ResBlock1, ResBlock2, LRELU_SLOPE
|
12 |
+
from .utils import call_weight_data_normal_if_Conv
|
13 |
+
|
14 |
+
|
15 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
16 |
+
"""SourceModule for hn-nsf
|
17 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
18 |
+
add_noise_std=0.003, voiced_threshod=0)
|
19 |
+
sampling_rate: sampling_rate in Hz
|
20 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
21 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
22 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
23 |
+
note that amplitude of noise in unvoiced is decided
|
24 |
+
by sine_amp
|
25 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
26 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
27 |
+
F0_sampled (batchsize, length, 1)
|
28 |
+
Sine_source (batchsize, length, 1)
|
29 |
+
noise_source (batchsize, length 1)
|
30 |
+
uv (batchsize, length, 1)
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
sampling_rate: int,
|
36 |
+
harmonic_num: int = 0,
|
37 |
+
sine_amp: float = 0.1,
|
38 |
+
add_noise_std: float = 0.003,
|
39 |
+
voiced_threshod: int = 0,
|
40 |
+
):
|
41 |
+
super(SourceModuleHnNSF, self).__init__()
|
42 |
+
|
43 |
+
self.sine_amp = sine_amp
|
44 |
+
self.noise_std = add_noise_std
|
45 |
+
# to produce sine waveforms
|
46 |
+
self.l_sin_gen = SineGenerator(
|
47 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
48 |
+
)
|
49 |
+
# to merge source harmonics into a single excitation
|
50 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
51 |
+
self.l_tanh = torch.nn.Tanh()
|
52 |
+
|
53 |
+
def __call__(self, x: torch.Tensor, upp: int = 1) -> torch.Tensor:
|
54 |
+
return super().__call__(x, upp=upp)
|
55 |
+
|
56 |
+
def forward(self, x: torch.Tensor, upp: int = 1) -> torch.Tensor:
|
57 |
+
sine_wavs, _, _ = self.l_sin_gen(x, upp)
|
58 |
+
sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype)
|
59 |
+
sine_merge: torch.Tensor = self.l_tanh(self.l_linear(sine_wavs))
|
60 |
+
return sine_merge # , None, None # noise, uv
|
61 |
+
|
62 |
+
|
63 |
+
class NSFGenerator(torch.nn.Module):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
initial_channel: int,
|
67 |
+
resblock: str,
|
68 |
+
resblock_kernel_sizes: List[int],
|
69 |
+
resblock_dilation_sizes: List[List[int]],
|
70 |
+
upsample_rates: List[int],
|
71 |
+
upsample_initial_channel: int,
|
72 |
+
upsample_kernel_sizes: List[int],
|
73 |
+
gin_channels: int,
|
74 |
+
sr: int,
|
75 |
+
):
|
76 |
+
super(NSFGenerator, self).__init__()
|
77 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
78 |
+
self.num_upsamples = len(upsample_rates)
|
79 |
+
|
80 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates))
|
81 |
+
self.m_source = SourceModuleHnNSF(sampling_rate=sr, harmonic_num=0)
|
82 |
+
self.noise_convs = nn.ModuleList()
|
83 |
+
self.conv_pre = Conv1d(
|
84 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
85 |
+
)
|
86 |
+
resblock = ResBlock1 if resblock == "1" else ResBlock2
|
87 |
+
|
88 |
+
self.ups = nn.ModuleList()
|
89 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
90 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
91 |
+
self.ups.append(
|
92 |
+
weight_norm(
|
93 |
+
ConvTranspose1d(
|
94 |
+
upsample_initial_channel // (2**i),
|
95 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
96 |
+
k,
|
97 |
+
u,
|
98 |
+
padding=(k - u) // 2,
|
99 |
+
)
|
100 |
+
)
|
101 |
+
)
|
102 |
+
if i + 1 < len(upsample_rates):
|
103 |
+
stride_f0 = math.prod(upsample_rates[i + 1 :])
|
104 |
+
self.noise_convs.append(
|
105 |
+
Conv1d(
|
106 |
+
1,
|
107 |
+
c_cur,
|
108 |
+
kernel_size=stride_f0 * 2,
|
109 |
+
stride=stride_f0,
|
110 |
+
padding=stride_f0 // 2,
|
111 |
+
)
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
115 |
+
|
116 |
+
self.resblocks = nn.ModuleList()
|
117 |
+
for i in range(len(self.ups)):
|
118 |
+
ch: int = upsample_initial_channel // (2 ** (i + 1))
|
119 |
+
for j, (k, d) in enumerate(
|
120 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
121 |
+
):
|
122 |
+
self.resblocks.append(resblock(ch, k, d))
|
123 |
+
|
124 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
125 |
+
self.ups.apply(call_weight_data_normal_if_Conv)
|
126 |
+
|
127 |
+
if gin_channels != 0:
|
128 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
129 |
+
|
130 |
+
self.upp = math.prod(upsample_rates)
|
131 |
+
|
132 |
+
self.lrelu_slope = LRELU_SLOPE
|
133 |
+
|
134 |
+
def __call__(
|
135 |
+
self,
|
136 |
+
x: torch.Tensor,
|
137 |
+
f0: torch.Tensor,
|
138 |
+
g: Optional[torch.Tensor] = None,
|
139 |
+
n_res: Optional[int] = None,
|
140 |
+
) -> torch.Tensor:
|
141 |
+
return super().__call__(x, f0, g=g, n_res=n_res)
|
142 |
+
|
143 |
+
def forward(
|
144 |
+
self,
|
145 |
+
x: torch.Tensor,
|
146 |
+
f0: torch.Tensor,
|
147 |
+
g: Optional[torch.Tensor] = None,
|
148 |
+
n_res: Optional[int] = None,
|
149 |
+
) -> torch.Tensor:
|
150 |
+
har_source = self.m_source(f0, self.upp)
|
151 |
+
har_source = har_source.transpose(1, 2)
|
152 |
+
|
153 |
+
if n_res is not None:
|
154 |
+
n_res = int(n_res)
|
155 |
+
if n_res * self.upp != har_source.shape[-1]:
|
156 |
+
har_source = F.interpolate(
|
157 |
+
har_source, size=n_res * self.upp, mode="linear"
|
158 |
+
)
|
159 |
+
if n_res != x.shape[-1]:
|
160 |
+
x = F.interpolate(x, size=n_res, mode="linear")
|
161 |
+
|
162 |
+
x = self.conv_pre(x)
|
163 |
+
if g is not None:
|
164 |
+
x = x + self.cond(g)
|
165 |
+
# torch.jit.script() does not support direct indexing of torch modules
|
166 |
+
# That's why I wrote this
|
167 |
+
for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)):
|
168 |
+
if i < self.num_upsamples:
|
169 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
170 |
+
x = ups(x)
|
171 |
+
x_source = noise_convs(har_source)
|
172 |
+
x = x + x_source
|
173 |
+
xs: Optional[torch.Tensor] = None
|
174 |
+
l = [i * self.num_kernels + j for j in range(self.num_kernels)]
|
175 |
+
for j, resblock in enumerate(self.resblocks):
|
176 |
+
if j in l:
|
177 |
+
if xs is None:
|
178 |
+
xs = resblock(x)
|
179 |
+
else:
|
180 |
+
xs += resblock(x)
|
181 |
+
# This assertion cannot be ignored! \
|
182 |
+
# If ignored, it will cause torch.jit.script() compilation errors
|
183 |
+
assert isinstance(xs, torch.Tensor)
|
184 |
+
x = xs / self.num_kernels
|
185 |
+
x = F.leaky_relu(x)
|
186 |
+
x = self.conv_post(x)
|
187 |
+
x = torch.tanh(x)
|
188 |
+
|
189 |
+
return x
|
190 |
+
|
191 |
+
def remove_weight_norm(self):
|
192 |
+
for l in self.ups:
|
193 |
+
remove_weight_norm(l)
|
194 |
+
for l in self.resblocks:
|
195 |
+
l.remove_weight_norm()
|
196 |
+
|
197 |
+
def __prepare_scriptable__(self):
|
198 |
+
for l in self.ups:
|
199 |
+
for hook in l._forward_pre_hooks.values():
|
200 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
201 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
202 |
+
# because of shadowing, so we check the module name directly.
|
203 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
204 |
+
if (
|
205 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
206 |
+
and hook.__class__.__name__ == "WeightNorm"
|
207 |
+
):
|
208 |
+
torch.nn.utils.remove_weight_norm(l)
|
209 |
+
for l in self.resblocks:
|
210 |
+
for hook in self.resblocks._forward_pre_hooks.values():
|
211 |
+
if (
|
212 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
213 |
+
and hook.__class__.__name__ == "WeightNorm"
|
214 |
+
):
|
215 |
+
torch.nn.utils.remove_weight_norm(l)
|
216 |
+
return self
|
rvc/layers/residuals.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, List, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Conv1d
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
8 |
+
|
9 |
+
from .norms import WN
|
10 |
+
from .utils import (
|
11 |
+
get_padding,
|
12 |
+
call_weight_data_normal_if_Conv,
|
13 |
+
)
|
14 |
+
|
15 |
+
LRELU_SLOPE = 0.1
|
16 |
+
|
17 |
+
|
18 |
+
class ResBlock1(torch.nn.Module):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
channels: int,
|
22 |
+
kernel_size: int = 3,
|
23 |
+
dilation: List[int] = (1, 3, 5),
|
24 |
+
):
|
25 |
+
super(ResBlock1, self).__init__()
|
26 |
+
|
27 |
+
self.convs1 = nn.ModuleList()
|
28 |
+
for d in dilation:
|
29 |
+
self.convs1.append(
|
30 |
+
weight_norm(
|
31 |
+
Conv1d(
|
32 |
+
channels,
|
33 |
+
channels,
|
34 |
+
kernel_size,
|
35 |
+
1,
|
36 |
+
dilation=d,
|
37 |
+
padding=get_padding(kernel_size, d),
|
38 |
+
)
|
39 |
+
),
|
40 |
+
)
|
41 |
+
self.convs1.apply(call_weight_data_normal_if_Conv)
|
42 |
+
|
43 |
+
self.convs2 = nn.ModuleList()
|
44 |
+
for _ in dilation:
|
45 |
+
self.convs2.append(
|
46 |
+
weight_norm(
|
47 |
+
Conv1d(
|
48 |
+
channels,
|
49 |
+
channels,
|
50 |
+
kernel_size,
|
51 |
+
1,
|
52 |
+
dilation=1,
|
53 |
+
padding=get_padding(kernel_size, 1),
|
54 |
+
)
|
55 |
+
),
|
56 |
+
)
|
57 |
+
self.convs2.apply(call_weight_data_normal_if_Conv)
|
58 |
+
self.lrelu_slope = LRELU_SLOPE
|
59 |
+
|
60 |
+
def __call__(
|
61 |
+
self,
|
62 |
+
x: torch.Tensor,
|
63 |
+
x_mask: Optional[torch.Tensor] = None,
|
64 |
+
) -> torch.Tensor:
|
65 |
+
return super().__call__(x, x_mask=x_mask)
|
66 |
+
|
67 |
+
def forward(
|
68 |
+
self,
|
69 |
+
x: torch.Tensor,
|
70 |
+
x_mask: Optional[torch.Tensor] = None,
|
71 |
+
) -> torch.Tensor:
|
72 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
73 |
+
xt = F.leaky_relu(x, self.lrelu_slope)
|
74 |
+
if x_mask is not None:
|
75 |
+
xt = xt * x_mask
|
76 |
+
xt = c1(xt)
|
77 |
+
xt = F.leaky_relu(xt, self.lrelu_slope)
|
78 |
+
if x_mask is not None:
|
79 |
+
xt = xt * x_mask
|
80 |
+
xt = c2(xt)
|
81 |
+
x = xt + x
|
82 |
+
if x_mask is not None:
|
83 |
+
x = x * x_mask
|
84 |
+
return x
|
85 |
+
|
86 |
+
def remove_weight_norm(self):
|
87 |
+
for l in self.convs1:
|
88 |
+
remove_weight_norm(l)
|
89 |
+
for l in self.convs2:
|
90 |
+
remove_weight_norm(l)
|
91 |
+
|
92 |
+
def __prepare_scriptable__(self):
|
93 |
+
for l in self.convs1:
|
94 |
+
for hook in l._forward_pre_hooks.values():
|
95 |
+
if (
|
96 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
97 |
+
and hook.__class__.__name__ == "WeightNorm"
|
98 |
+
):
|
99 |
+
torch.nn.utils.remove_weight_norm(l)
|
100 |
+
for l in self.convs2:
|
101 |
+
for hook in l._forward_pre_hooks.values():
|
102 |
+
if (
|
103 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
104 |
+
and hook.__class__.__name__ == "WeightNorm"
|
105 |
+
):
|
106 |
+
torch.nn.utils.remove_weight_norm(l)
|
107 |
+
return self
|
108 |
+
|
109 |
+
|
110 |
+
class ResBlock2(torch.nn.Module):
|
111 |
+
"""
|
112 |
+
Actually this module is not used currently
|
113 |
+
because all configs specified "resblock": "1"
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
channels: int,
|
119 |
+
kernel_size=3,
|
120 |
+
dilation: List[int] = (1, 3),
|
121 |
+
):
|
122 |
+
super(ResBlock2, self).__init__()
|
123 |
+
self.convs = nn.ModuleList()
|
124 |
+
for d in dilation:
|
125 |
+
self.convs.append(
|
126 |
+
weight_norm(
|
127 |
+
Conv1d(
|
128 |
+
channels,
|
129 |
+
channels,
|
130 |
+
kernel_size,
|
131 |
+
1,
|
132 |
+
dilation=d,
|
133 |
+
padding=get_padding(kernel_size, d),
|
134 |
+
)
|
135 |
+
),
|
136 |
+
)
|
137 |
+
self.convs.apply(call_weight_data_normal_if_Conv)
|
138 |
+
self.lrelu_slope = LRELU_SLOPE
|
139 |
+
|
140 |
+
def __call__(
|
141 |
+
self,
|
142 |
+
x: torch.Tensor,
|
143 |
+
x_mask: Optional[torch.Tensor] = None,
|
144 |
+
) -> torch.Tensor:
|
145 |
+
return super().__call__(x, x_mask=x_mask)
|
146 |
+
|
147 |
+
def forward(
|
148 |
+
self,
|
149 |
+
x: torch.Tensor,
|
150 |
+
x_mask: Optional[torch.Tensor] = None,
|
151 |
+
) -> torch.Tensor:
|
152 |
+
for c in self.convs:
|
153 |
+
xt = F.leaky_relu(x, self.lrelu_slope)
|
154 |
+
if x_mask is not None:
|
155 |
+
xt = xt * x_mask
|
156 |
+
xt = c(xt)
|
157 |
+
x = xt + x
|
158 |
+
if x_mask is not None:
|
159 |
+
x = x * x_mask
|
160 |
+
return x
|
161 |
+
|
162 |
+
def remove_weight_norm(self):
|
163 |
+
for l in self.convs:
|
164 |
+
remove_weight_norm(l)
|
165 |
+
|
166 |
+
def __prepare_scriptable__(self):
|
167 |
+
for l in self.convs:
|
168 |
+
for hook in l._forward_pre_hooks.values():
|
169 |
+
if (
|
170 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
171 |
+
and hook.__class__.__name__ == "WeightNorm"
|
172 |
+
):
|
173 |
+
torch.nn.utils.remove_weight_norm(l)
|
174 |
+
return self
|
175 |
+
|
176 |
+
|
177 |
+
class ResidualCouplingLayer(nn.Module):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
channels: int,
|
181 |
+
hidden_channels: int,
|
182 |
+
kernel_size: int,
|
183 |
+
dilation_rate: int,
|
184 |
+
n_layers: int,
|
185 |
+
p_dropout: int = 0,
|
186 |
+
gin_channels: int = 0,
|
187 |
+
mean_only: bool = False,
|
188 |
+
):
|
189 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
190 |
+
super(ResidualCouplingLayer, self).__init__()
|
191 |
+
self.channels = channels
|
192 |
+
self.hidden_channels = hidden_channels
|
193 |
+
self.kernel_size = kernel_size
|
194 |
+
self.dilation_rate = dilation_rate
|
195 |
+
self.n_layers = n_layers
|
196 |
+
self.half_channels = channels // 2
|
197 |
+
self.mean_only = mean_only
|
198 |
+
|
199 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
200 |
+
self.enc = WN(
|
201 |
+
hidden_channels,
|
202 |
+
kernel_size,
|
203 |
+
dilation_rate,
|
204 |
+
n_layers,
|
205 |
+
p_dropout=float(p_dropout),
|
206 |
+
gin_channels=gin_channels,
|
207 |
+
)
|
208 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
209 |
+
self.post.weight.data.zero_()
|
210 |
+
self.post.bias.data.zero_()
|
211 |
+
|
212 |
+
def __call__(
|
213 |
+
self,
|
214 |
+
x: torch.Tensor,
|
215 |
+
x_mask: torch.Tensor,
|
216 |
+
g: Optional[torch.Tensor] = None,
|
217 |
+
reverse: bool = False,
|
218 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
219 |
+
return super().__call__(x, x_mask, g=g, reverse=reverse)
|
220 |
+
|
221 |
+
def forward(
|
222 |
+
self,
|
223 |
+
x: torch.Tensor,
|
224 |
+
x_mask: torch.Tensor,
|
225 |
+
g: Optional[torch.Tensor] = None,
|
226 |
+
reverse: bool = False,
|
227 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
228 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
229 |
+
h = self.pre(x0) * x_mask
|
230 |
+
h = self.enc(h, x_mask, g=g)
|
231 |
+
stats = self.post(h) * x_mask
|
232 |
+
if not self.mean_only:
|
233 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
234 |
+
else:
|
235 |
+
m = stats
|
236 |
+
logs = torch.zeros_like(m)
|
237 |
+
|
238 |
+
if not reverse:
|
239 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
240 |
+
x = torch.cat([x0, x1], 1)
|
241 |
+
logdet = torch.sum(logs, [1, 2])
|
242 |
+
return x, logdet
|
243 |
+
|
244 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
245 |
+
x = torch.cat([x0, x1], 1)
|
246 |
+
return x, torch.zeros([1])
|
247 |
+
|
248 |
+
def remove_weight_norm(self):
|
249 |
+
self.enc.remove_weight_norm()
|
250 |
+
|
251 |
+
def __prepare_scriptable__(self):
|
252 |
+
for hook in self.enc._forward_pre_hooks.values():
|
253 |
+
if (
|
254 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
255 |
+
and hook.__class__.__name__ == "WeightNorm"
|
256 |
+
):
|
257 |
+
torch.nn.utils.remove_weight_norm(self.enc)
|
258 |
+
return self
|
259 |
+
|
260 |
+
|
261 |
+
class ResidualCouplingBlock(nn.Module):
|
262 |
+
class Flip(nn.Module):
|
263 |
+
"""
|
264 |
+
torch.jit.script() Compiled functions
|
265 |
+
can't take variable number of arguments or
|
266 |
+
use keyword-only arguments with defaults
|
267 |
+
"""
|
268 |
+
|
269 |
+
def forward(
|
270 |
+
self,
|
271 |
+
x: torch.Tensor,
|
272 |
+
x_mask: torch.Tensor,
|
273 |
+
g: Optional[torch.Tensor] = None,
|
274 |
+
reverse: bool = False,
|
275 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
276 |
+
x = torch.flip(x, [1])
|
277 |
+
if not reverse:
|
278 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
279 |
+
return x, logdet
|
280 |
+
else:
|
281 |
+
return x, torch.zeros([1], device=x.device)
|
282 |
+
|
283 |
+
def __init__(
|
284 |
+
self,
|
285 |
+
channels: int,
|
286 |
+
hidden_channels: int,
|
287 |
+
kernel_size: int,
|
288 |
+
dilation_rate: int,
|
289 |
+
n_layers: int,
|
290 |
+
n_flows: int = 4,
|
291 |
+
gin_channels: int = 0,
|
292 |
+
):
|
293 |
+
super(ResidualCouplingBlock, self).__init__()
|
294 |
+
self.channels = channels
|
295 |
+
self.hidden_channels = hidden_channels
|
296 |
+
self.kernel_size = kernel_size
|
297 |
+
self.dilation_rate = dilation_rate
|
298 |
+
self.n_layers = n_layers
|
299 |
+
self.n_flows = n_flows
|
300 |
+
self.gin_channels = gin_channels
|
301 |
+
|
302 |
+
self.flows = nn.ModuleList()
|
303 |
+
for _ in range(n_flows):
|
304 |
+
self.flows.append(
|
305 |
+
ResidualCouplingLayer(
|
306 |
+
channels,
|
307 |
+
hidden_channels,
|
308 |
+
kernel_size,
|
309 |
+
dilation_rate,
|
310 |
+
n_layers,
|
311 |
+
gin_channels=gin_channels,
|
312 |
+
mean_only=True,
|
313 |
+
)
|
314 |
+
)
|
315 |
+
self.flows.append(self.Flip())
|
316 |
+
|
317 |
+
def __call__(
|
318 |
+
self,
|
319 |
+
x: torch.Tensor,
|
320 |
+
x_mask: torch.Tensor,
|
321 |
+
g: Optional[torch.Tensor] = None,
|
322 |
+
reverse: bool = False,
|
323 |
+
) -> torch.Tensor:
|
324 |
+
return super().__call__(x, x_mask, g=g, reverse=reverse)
|
325 |
+
|
326 |
+
def forward(
|
327 |
+
self,
|
328 |
+
x: torch.Tensor,
|
329 |
+
x_mask: torch.Tensor,
|
330 |
+
g: Optional[torch.Tensor] = None,
|
331 |
+
reverse: bool = False,
|
332 |
+
) -> torch.Tensor:
|
333 |
+
if not reverse:
|
334 |
+
for flow in self.flows:
|
335 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
336 |
+
else:
|
337 |
+
for flow in reversed(self.flows):
|
338 |
+
x, _ = flow.forward(x, x_mask, g=g, reverse=reverse)
|
339 |
+
return x
|
340 |
+
|
341 |
+
def remove_weight_norm(self):
|
342 |
+
for i in range(self.n_flows):
|
343 |
+
self.flows[i * 2].remove_weight_norm()
|
344 |
+
|
345 |
+
def __prepare_scriptable__(self):
|
346 |
+
for i in range(self.n_flows):
|
347 |
+
for hook in self.flows[i * 2]._forward_pre_hooks.values():
|
348 |
+
if (
|
349 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
350 |
+
and hook.__class__.__name__ == "WeightNorm"
|
351 |
+
):
|
352 |
+
torch.nn.utils.remove_weight_norm(self.flows[i * 2])
|
353 |
+
return self
|
rvc/layers/synthesizers.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, List, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
|
7 |
+
from .encoders import TextEncoder, PosteriorEncoder
|
8 |
+
from .generators import Generator
|
9 |
+
from .nsf import NSFGenerator
|
10 |
+
from .residuals import ResidualCouplingBlock
|
11 |
+
from .utils import (
|
12 |
+
slice_on_last_dim,
|
13 |
+
rand_slice_segments_on_last_dim,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
class SynthesizerTrnMsNSFsid(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
spec_channels: int,
|
21 |
+
segment_size: int,
|
22 |
+
inter_channels: int,
|
23 |
+
hidden_channels: int,
|
24 |
+
filter_channels: int,
|
25 |
+
n_heads: int,
|
26 |
+
n_layers: int,
|
27 |
+
kernel_size: int,
|
28 |
+
p_dropout: int,
|
29 |
+
resblock: str,
|
30 |
+
resblock_kernel_sizes: List[int],
|
31 |
+
resblock_dilation_sizes: List[List[int]],
|
32 |
+
upsample_rates: List[int],
|
33 |
+
upsample_initial_channel: int,
|
34 |
+
upsample_kernel_sizes: List[int],
|
35 |
+
spk_embed_dim: int,
|
36 |
+
gin_channels: int,
|
37 |
+
sr: Optional[Union[str, int]],
|
38 |
+
encoder_dim: int,
|
39 |
+
use_f0: bool,
|
40 |
+
):
|
41 |
+
super().__init__()
|
42 |
+
if isinstance(sr, str):
|
43 |
+
sr = {
|
44 |
+
"32k": 32000,
|
45 |
+
"40k": 40000,
|
46 |
+
"48k": 48000,
|
47 |
+
}[sr]
|
48 |
+
self.spec_channels = spec_channels
|
49 |
+
self.inter_channels = inter_channels
|
50 |
+
self.hidden_channels = hidden_channels
|
51 |
+
self.filter_channels = filter_channels
|
52 |
+
self.n_heads = n_heads
|
53 |
+
self.n_layers = n_layers
|
54 |
+
self.kernel_size = kernel_size
|
55 |
+
self.p_dropout = float(p_dropout)
|
56 |
+
self.resblock = resblock
|
57 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
58 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
59 |
+
self.upsample_rates = upsample_rates
|
60 |
+
self.upsample_initial_channel = upsample_initial_channel
|
61 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
62 |
+
self.segment_size = segment_size
|
63 |
+
self.gin_channels = gin_channels
|
64 |
+
self.spk_embed_dim = spk_embed_dim
|
65 |
+
|
66 |
+
self.enc_p = TextEncoder(
|
67 |
+
encoder_dim,
|
68 |
+
inter_channels,
|
69 |
+
hidden_channels,
|
70 |
+
filter_channels,
|
71 |
+
n_heads,
|
72 |
+
n_layers,
|
73 |
+
kernel_size,
|
74 |
+
float(p_dropout),
|
75 |
+
f0=use_f0,
|
76 |
+
)
|
77 |
+
if use_f0:
|
78 |
+
self.dec = NSFGenerator(
|
79 |
+
inter_channels,
|
80 |
+
resblock,
|
81 |
+
resblock_kernel_sizes,
|
82 |
+
resblock_dilation_sizes,
|
83 |
+
upsample_rates,
|
84 |
+
upsample_initial_channel,
|
85 |
+
upsample_kernel_sizes,
|
86 |
+
gin_channels=gin_channels,
|
87 |
+
sr=sr,
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
self.dec = Generator(
|
91 |
+
inter_channels,
|
92 |
+
resblock,
|
93 |
+
resblock_kernel_sizes,
|
94 |
+
resblock_dilation_sizes,
|
95 |
+
upsample_rates,
|
96 |
+
upsample_initial_channel,
|
97 |
+
upsample_kernel_sizes,
|
98 |
+
gin_channels=gin_channels,
|
99 |
+
)
|
100 |
+
self.enc_q = PosteriorEncoder(
|
101 |
+
spec_channels,
|
102 |
+
inter_channels,
|
103 |
+
hidden_channels,
|
104 |
+
5,
|
105 |
+
1,
|
106 |
+
16,
|
107 |
+
gin_channels=gin_channels,
|
108 |
+
)
|
109 |
+
self.flow = ResidualCouplingBlock(
|
110 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
111 |
+
)
|
112 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
113 |
+
|
114 |
+
def remove_weight_norm(self):
|
115 |
+
self.dec.remove_weight_norm()
|
116 |
+
self.flow.remove_weight_norm()
|
117 |
+
if hasattr(self, "enc_q"):
|
118 |
+
self.enc_q.remove_weight_norm()
|
119 |
+
|
120 |
+
def __prepare_scriptable__(self):
|
121 |
+
for hook in self.dec._forward_pre_hooks.values():
|
122 |
+
# The hook we want to remove is an instance of WeightNorm class, so
|
123 |
+
# normally we would do `if isinstance(...)` but this class is not accessible
|
124 |
+
# because of shadowing, so we check the module name directly.
|
125 |
+
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
|
126 |
+
if (
|
127 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
128 |
+
and hook.__class__.__name__ == "WeightNorm"
|
129 |
+
):
|
130 |
+
torch.nn.utils.remove_weight_norm(self.dec)
|
131 |
+
for hook in self.flow._forward_pre_hooks.values():
|
132 |
+
if (
|
133 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
134 |
+
and hook.__class__.__name__ == "WeightNorm"
|
135 |
+
):
|
136 |
+
torch.nn.utils.remove_weight_norm(self.flow)
|
137 |
+
if hasattr(self, "enc_q"):
|
138 |
+
for hook in self.enc_q._forward_pre_hooks.values():
|
139 |
+
if (
|
140 |
+
hook.__module__ == "torch.nn.utils.weight_norm"
|
141 |
+
and hook.__class__.__name__ == "WeightNorm"
|
142 |
+
):
|
143 |
+
torch.nn.utils.remove_weight_norm(self.enc_q)
|
144 |
+
return self
|
145 |
+
|
146 |
+
@torch.jit.ignore
|
147 |
+
def forward(
|
148 |
+
self,
|
149 |
+
phone: torch.Tensor,
|
150 |
+
phone_lengths: torch.Tensor,
|
151 |
+
y: torch.Tensor,
|
152 |
+
y_lengths: torch.Tensor,
|
153 |
+
ds: Optional[torch.Tensor] = None,
|
154 |
+
pitch: Optional[torch.Tensor] = None,
|
155 |
+
pitchf: Optional[torch.Tensor] = None,
|
156 |
+
): # 这里ds是id,[bs,1]
|
157 |
+
# print(1,pitch.shape)#[bs,t]
|
158 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
159 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
160 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
161 |
+
z_p = self.flow(z, y_mask, g=g)
|
162 |
+
z_slice, ids_slice = rand_slice_segments_on_last_dim(
|
163 |
+
z, y_lengths, self.segment_size
|
164 |
+
)
|
165 |
+
if pitchf is not None:
|
166 |
+
pitchf = slice_on_last_dim(pitchf, ids_slice, self.segment_size)
|
167 |
+
o = self.dec(z_slice, pitchf, g=g)
|
168 |
+
else:
|
169 |
+
o = self.dec(z_slice, g=g)
|
170 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
171 |
+
|
172 |
+
@torch.jit.export
|
173 |
+
def infer(
|
174 |
+
self,
|
175 |
+
phone: torch.Tensor,
|
176 |
+
phone_lengths: torch.Tensor,
|
177 |
+
sid: torch.Tensor,
|
178 |
+
pitch: Optional[torch.Tensor] = None,
|
179 |
+
pitchf: Optional[torch.Tensor] = None, # nsff0
|
180 |
+
skip_head: Optional[int] = None,
|
181 |
+
return_length: Optional[int] = None,
|
182 |
+
return_length2: Optional[int] = None,
|
183 |
+
):
|
184 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
185 |
+
if skip_head is not None and return_length is not None:
|
186 |
+
head = int(skip_head)
|
187 |
+
length = int(return_length)
|
188 |
+
flow_head = head - 24
|
189 |
+
if flow_head < 0:
|
190 |
+
flow_head = 0
|
191 |
+
dec_head = head - flow_head
|
192 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths, flow_head)
|
193 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
194 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
195 |
+
z = z[:, :, dec_head : dec_head + length]
|
196 |
+
x_mask = x_mask[:, :, dec_head : dec_head + length]
|
197 |
+
if pitchf is not None:
|
198 |
+
pitchf = pitchf[:, head : head + length]
|
199 |
+
else:
|
200 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
201 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
202 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
203 |
+
del z_p, m_p, logs_p
|
204 |
+
if pitchf is not None:
|
205 |
+
o = self.dec(
|
206 |
+
z * x_mask,
|
207 |
+
pitchf,
|
208 |
+
g=g,
|
209 |
+
n_res=return_length2,
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
o = self.dec(z * x_mask, g=g, n_res=return_length2)
|
213 |
+
del x_mask, z
|
214 |
+
return o # , x_mask, (z, z_p, m_p, logs_p)
|
215 |
+
|
216 |
+
|
217 |
+
class SynthesizerTrnMs256NSFsid(SynthesizerTrnMsNSFsid):
|
218 |
+
def __init__(
|
219 |
+
self,
|
220 |
+
spec_channels: int,
|
221 |
+
segment_size: int,
|
222 |
+
inter_channels: int,
|
223 |
+
hidden_channels: int,
|
224 |
+
filter_channels: int,
|
225 |
+
n_heads: int,
|
226 |
+
n_layers: int,
|
227 |
+
kernel_size: int,
|
228 |
+
p_dropout: int,
|
229 |
+
resblock: str,
|
230 |
+
resblock_kernel_sizes: List[int],
|
231 |
+
resblock_dilation_sizes: List[List[int]],
|
232 |
+
upsample_rates: List[int],
|
233 |
+
upsample_initial_channel: int,
|
234 |
+
upsample_kernel_sizes: List[int],
|
235 |
+
spk_embed_dim: int,
|
236 |
+
gin_channels: int,
|
237 |
+
sr: Union[str, int],
|
238 |
+
):
|
239 |
+
super().__init__(
|
240 |
+
spec_channels,
|
241 |
+
segment_size,
|
242 |
+
inter_channels,
|
243 |
+
hidden_channels,
|
244 |
+
filter_channels,
|
245 |
+
n_heads,
|
246 |
+
n_layers,
|
247 |
+
kernel_size,
|
248 |
+
p_dropout,
|
249 |
+
resblock,
|
250 |
+
resblock_kernel_sizes,
|
251 |
+
resblock_dilation_sizes,
|
252 |
+
upsample_rates,
|
253 |
+
upsample_initial_channel,
|
254 |
+
upsample_kernel_sizes,
|
255 |
+
spk_embed_dim,
|
256 |
+
gin_channels,
|
257 |
+
sr,
|
258 |
+
256,
|
259 |
+
True,
|
260 |
+
)
|
261 |
+
|
262 |
+
|
263 |
+
class SynthesizerTrnMs768NSFsid(SynthesizerTrnMsNSFsid):
|
264 |
+
def __init__(
|
265 |
+
self,
|
266 |
+
spec_channels: int,
|
267 |
+
segment_size: int,
|
268 |
+
inter_channels: int,
|
269 |
+
hidden_channels: int,
|
270 |
+
filter_channels: int,
|
271 |
+
n_heads: int,
|
272 |
+
n_layers: int,
|
273 |
+
kernel_size: int,
|
274 |
+
p_dropout: int,
|
275 |
+
resblock: str,
|
276 |
+
resblock_kernel_sizes: List[int],
|
277 |
+
resblock_dilation_sizes: List[List[int]],
|
278 |
+
upsample_rates: List[int],
|
279 |
+
upsample_initial_channel: int,
|
280 |
+
upsample_kernel_sizes: List[int],
|
281 |
+
spk_embed_dim: int,
|
282 |
+
gin_channels: int,
|
283 |
+
sr: Union[str, int],
|
284 |
+
):
|
285 |
+
super().__init__(
|
286 |
+
spec_channels,
|
287 |
+
segment_size,
|
288 |
+
inter_channels,
|
289 |
+
hidden_channels,
|
290 |
+
filter_channels,
|
291 |
+
n_heads,
|
292 |
+
n_layers,
|
293 |
+
kernel_size,
|
294 |
+
p_dropout,
|
295 |
+
resblock,
|
296 |
+
resblock_kernel_sizes,
|
297 |
+
resblock_dilation_sizes,
|
298 |
+
upsample_rates,
|
299 |
+
upsample_initial_channel,
|
300 |
+
upsample_kernel_sizes,
|
301 |
+
spk_embed_dim,
|
302 |
+
gin_channels,
|
303 |
+
sr,
|
304 |
+
768,
|
305 |
+
True,
|
306 |
+
)
|
307 |
+
|
308 |
+
|
309 |
+
class SynthesizerTrnMs256NSFsid_nono(SynthesizerTrnMsNSFsid):
|
310 |
+
def __init__(
|
311 |
+
self,
|
312 |
+
spec_channels: int,
|
313 |
+
segment_size: int,
|
314 |
+
inter_channels: int,
|
315 |
+
hidden_channels: int,
|
316 |
+
filter_channels: int,
|
317 |
+
n_heads: int,
|
318 |
+
n_layers: int,
|
319 |
+
kernel_size: int,
|
320 |
+
p_dropout: int,
|
321 |
+
resblock: str,
|
322 |
+
resblock_kernel_sizes: List[int],
|
323 |
+
resblock_dilation_sizes: List[List[int]],
|
324 |
+
upsample_rates: List[int],
|
325 |
+
upsample_initial_channel: int,
|
326 |
+
upsample_kernel_sizes: List[int],
|
327 |
+
spk_embed_dim: int,
|
328 |
+
gin_channels: int,
|
329 |
+
sr=None,
|
330 |
+
):
|
331 |
+
super().__init__(
|
332 |
+
spec_channels,
|
333 |
+
segment_size,
|
334 |
+
inter_channels,
|
335 |
+
hidden_channels,
|
336 |
+
filter_channels,
|
337 |
+
n_heads,
|
338 |
+
n_layers,
|
339 |
+
kernel_size,
|
340 |
+
p_dropout,
|
341 |
+
resblock,
|
342 |
+
resblock_kernel_sizes,
|
343 |
+
resblock_dilation_sizes,
|
344 |
+
upsample_rates,
|
345 |
+
upsample_initial_channel,
|
346 |
+
upsample_kernel_sizes,
|
347 |
+
spk_embed_dim,
|
348 |
+
gin_channels,
|
349 |
+
256,
|
350 |
+
False,
|
351 |
+
)
|
352 |
+
|
353 |
+
|
354 |
+
class SynthesizerTrnMs768NSFsid_nono(SynthesizerTrnMsNSFsid):
|
355 |
+
def __init__(
|
356 |
+
self,
|
357 |
+
spec_channels: int,
|
358 |
+
segment_size: int,
|
359 |
+
inter_channels: int,
|
360 |
+
hidden_channels: int,
|
361 |
+
filter_channels: int,
|
362 |
+
n_heads: int,
|
363 |
+
n_layers: int,
|
364 |
+
kernel_size: int,
|
365 |
+
p_dropout: int,
|
366 |
+
resblock: str,
|
367 |
+
resblock_kernel_sizes: List[int],
|
368 |
+
resblock_dilation_sizes: List[List[int]],
|
369 |
+
upsample_rates: List[int],
|
370 |
+
upsample_initial_channel: int,
|
371 |
+
upsample_kernel_sizes: List[int],
|
372 |
+
spk_embed_dim: int,
|
373 |
+
gin_channels: int,
|
374 |
+
sr=None,
|
375 |
+
):
|
376 |
+
super().__init__(
|
377 |
+
spec_channels,
|
378 |
+
segment_size,
|
379 |
+
inter_channels,
|
380 |
+
hidden_channels,
|
381 |
+
filter_channels,
|
382 |
+
n_heads,
|
383 |
+
n_layers,
|
384 |
+
kernel_size,
|
385 |
+
p_dropout,
|
386 |
+
resblock,
|
387 |
+
resblock_kernel_sizes,
|
388 |
+
resblock_dilation_sizes,
|
389 |
+
upsample_rates,
|
390 |
+
upsample_initial_channel,
|
391 |
+
upsample_kernel_sizes,
|
392 |
+
spk_embed_dim,
|
393 |
+
gin_channels,
|
394 |
+
768,
|
395 |
+
False,
|
396 |
+
)
|
rvc/layers/transforms.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(
|
13 |
+
inputs: torch.Tensor,
|
14 |
+
unnormalized_widths: torch.Tensor,
|
15 |
+
unnormalized_heights: torch.Tensor,
|
16 |
+
unnormalized_derivatives: torch.Tensor,
|
17 |
+
inverse: bool = False,
|
18 |
+
tails: Optional[str] = None,
|
19 |
+
tail_bound: float = 1.0,
|
20 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
21 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
22 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
23 |
+
):
|
24 |
+
if tails is None:
|
25 |
+
spline_fn = rational_quadratic_spline
|
26 |
+
spline_kwargs = {}
|
27 |
+
else:
|
28 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
29 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
30 |
+
|
31 |
+
outputs, logabsdet = spline_fn(
|
32 |
+
inputs=inputs,
|
33 |
+
unnormalized_widths=unnormalized_widths,
|
34 |
+
unnormalized_heights=unnormalized_heights,
|
35 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
36 |
+
inverse=inverse,
|
37 |
+
min_bin_width=min_bin_width,
|
38 |
+
min_bin_height=min_bin_height,
|
39 |
+
min_derivative=min_derivative,
|
40 |
+
**spline_kwargs
|
41 |
+
)
|
42 |
+
return outputs, logabsdet
|
43 |
+
|
44 |
+
|
45 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
46 |
+
bin_locations[..., -1] += eps
|
47 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
48 |
+
|
49 |
+
|
50 |
+
def unconstrained_rational_quadratic_spline(
|
51 |
+
inputs: torch.Tensor,
|
52 |
+
unnormalized_widths: torch.Tensor,
|
53 |
+
unnormalized_heights: torch.Tensor,
|
54 |
+
unnormalized_derivatives: torch.Tensor,
|
55 |
+
inverse: bool = False,
|
56 |
+
tails: str = "linear",
|
57 |
+
tail_bound: float = 1.0,
|
58 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
59 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
60 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
61 |
+
):
|
62 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
63 |
+
outside_interval_mask = ~inside_interval_mask
|
64 |
+
|
65 |
+
outputs = torch.zeros_like(inputs)
|
66 |
+
logabsdet = torch.zeros_like(inputs)
|
67 |
+
|
68 |
+
if tails == "linear":
|
69 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
70 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
71 |
+
unnormalized_derivatives[..., 0] = constant
|
72 |
+
unnormalized_derivatives[..., -1] = constant
|
73 |
+
|
74 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
75 |
+
logabsdet[outside_interval_mask] = 0
|
76 |
+
else:
|
77 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
78 |
+
|
79 |
+
(
|
80 |
+
outputs[inside_interval_mask],
|
81 |
+
logabsdet[inside_interval_mask],
|
82 |
+
) = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound,
|
89 |
+
right=tail_bound,
|
90 |
+
bottom=-tail_bound,
|
91 |
+
top=tail_bound,
|
92 |
+
min_bin_width=min_bin_width,
|
93 |
+
min_bin_height=min_bin_height,
|
94 |
+
min_derivative=min_derivative,
|
95 |
+
)
|
96 |
+
|
97 |
+
return outputs, logabsdet
|
98 |
+
|
99 |
+
|
100 |
+
def rational_quadratic_spline(
|
101 |
+
inputs: torch.Tensor,
|
102 |
+
unnormalized_widths: torch.Tensor,
|
103 |
+
unnormalized_heights: torch.Tensor,
|
104 |
+
unnormalized_derivatives: torch.Tensor,
|
105 |
+
inverse: bool = False,
|
106 |
+
left=0.0,
|
107 |
+
right=1.0,
|
108 |
+
bottom=0.0,
|
109 |
+
top=1.0,
|
110 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
111 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
112 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
113 |
+
):
|
114 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
115 |
+
raise ValueError("Input to a transform is not within its domain")
|
116 |
+
|
117 |
+
num_bins = unnormalized_widths.shape[-1]
|
118 |
+
|
119 |
+
if min_bin_width * num_bins > 1.0:
|
120 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
121 |
+
if min_bin_height * num_bins > 1.0:
|
122 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
123 |
+
|
124 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
125 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
126 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
127 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
128 |
+
cumwidths = (right - left) * cumwidths + left
|
129 |
+
cumwidths[..., 0] = left
|
130 |
+
cumwidths[..., -1] = right
|
131 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
132 |
+
|
133 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
134 |
+
|
135 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
136 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
137 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
138 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
139 |
+
cumheights = (top - bottom) * cumheights + bottom
|
140 |
+
cumheights[..., 0] = bottom
|
141 |
+
cumheights[..., -1] = top
|
142 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
143 |
+
|
144 |
+
if inverse:
|
145 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
146 |
+
else:
|
147 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
148 |
+
|
149 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
150 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
153 |
+
delta = heights / widths
|
154 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
155 |
+
|
156 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
157 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
158 |
+
|
159 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
160 |
+
|
161 |
+
if inverse:
|
162 |
+
a = (inputs - input_cumheights) * (
|
163 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
164 |
+
) + input_heights * (input_delta - input_derivatives)
|
165 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
166 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
167 |
+
)
|
168 |
+
c = -input_delta * (inputs - input_cumheights)
|
169 |
+
|
170 |
+
discriminant = b.pow(2) - 4 * a * c
|
171 |
+
assert (discriminant >= 0).all()
|
172 |
+
|
173 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
174 |
+
outputs = root * input_bin_widths + input_cumwidths
|
175 |
+
|
176 |
+
theta_one_minus_theta = root * (1 - root)
|
177 |
+
denominator = input_delta + (
|
178 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
179 |
+
* theta_one_minus_theta
|
180 |
+
)
|
181 |
+
derivative_numerator = input_delta.pow(2) * (
|
182 |
+
input_derivatives_plus_one * root.pow(2)
|
183 |
+
+ 2 * input_delta * theta_one_minus_theta
|
184 |
+
+ input_derivatives * (1 - root).pow(2)
|
185 |
+
)
|
186 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
187 |
+
|
188 |
+
return outputs, -logabsdet
|
189 |
+
else:
|
190 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
191 |
+
theta_one_minus_theta = theta * (1 - theta)
|
192 |
+
|
193 |
+
numerator = input_heights * (
|
194 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
195 |
+
)
|
196 |
+
denominator = input_delta + (
|
197 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
198 |
+
* theta_one_minus_theta
|
199 |
+
)
|
200 |
+
outputs = input_cumheights + numerator / denominator
|
201 |
+
|
202 |
+
derivative_numerator = input_delta.pow(2) * (
|
203 |
+
input_derivatives_plus_one * theta.pow(2)
|
204 |
+
+ 2 * input_delta * theta_one_minus_theta
|
205 |
+
+ input_derivatives * (1 - theta).pow(2)
|
206 |
+
)
|
207 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
208 |
+
|
209 |
+
return outputs, logabsdet
|
rvc/layers/utils.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Iterator
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def call_weight_data_normal_if_Conv(m: torch.nn.Module):
|
7 |
+
classname = m.__class__.__name__
|
8 |
+
if classname.find("Conv") != -1:
|
9 |
+
mean = 0.0
|
10 |
+
std = 0.01
|
11 |
+
m.weight.data.normal_(mean, std)
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(kernel_size: int, dilation=1) -> int:
|
15 |
+
return int((kernel_size * dilation - dilation) / 2)
|
16 |
+
|
17 |
+
|
18 |
+
def slice_on_last_dim(
|
19 |
+
x: torch.Tensor,
|
20 |
+
start_indices: List[int],
|
21 |
+
segment_size=4,
|
22 |
+
) -> torch.Tensor:
|
23 |
+
new_shape = [*x.shape]
|
24 |
+
new_shape[-1] = segment_size
|
25 |
+
ret = torch.empty(new_shape, device=x.device)
|
26 |
+
for i in range(x.size(0)):
|
27 |
+
idx_str = start_indices[i]
|
28 |
+
idx_end = idx_str + segment_size
|
29 |
+
ret[i, ..., :] = x[i, ..., idx_str:idx_end]
|
30 |
+
return ret
|
31 |
+
|
32 |
+
|
33 |
+
def rand_slice_segments_on_last_dim(
|
34 |
+
x: torch.Tensor,
|
35 |
+
x_lengths: int = None,
|
36 |
+
segment_size=4,
|
37 |
+
) -> Tuple[torch.Tensor, List[int]]:
|
38 |
+
b, _, t = x.size()
|
39 |
+
if x_lengths is None:
|
40 |
+
x_lengths = t
|
41 |
+
ids_str_max = x_lengths - segment_size + 1
|
42 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
43 |
+
ret = slice_on_last_dim(x, ids_str, segment_size)
|
44 |
+
return ret, ids_str
|
45 |
+
|
46 |
+
|
47 |
+
@torch.jit.script
|
48 |
+
def activate_add_tanh_sigmoid_multiply(
|
49 |
+
input_a: torch.Tensor, input_b: torch.Tensor, n_channels: int
|
50 |
+
) -> torch.Tensor:
|
51 |
+
in_act = input_a + input_b
|
52 |
+
t_act = torch.tanh(in_act[:, :n_channels, :])
|
53 |
+
s_act = torch.sigmoid(in_act[:, n_channels:, :])
|
54 |
+
acts = t_act * s_act
|
55 |
+
return acts
|
56 |
+
|
57 |
+
|
58 |
+
def sequence_mask(
|
59 |
+
length: torch.Tensor,
|
60 |
+
max_length: Optional[int] = None,
|
61 |
+
) -> torch.BoolTensor:
|
62 |
+
if max_length is None:
|
63 |
+
max_length = int(length.max())
|
64 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
65 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
66 |
+
|
67 |
+
|
68 |
+
def total_grad_norm(
|
69 |
+
parameters: Iterator[torch.nn.Parameter],
|
70 |
+
norm_type: float = 2.0,
|
71 |
+
) -> float:
|
72 |
+
norm_type = float(norm_type)
|
73 |
+
total_norm = 0.0
|
74 |
+
|
75 |
+
for p in parameters:
|
76 |
+
if p.grad is None:
|
77 |
+
continue
|
78 |
+
param_norm = p.grad.data.norm(norm_type)
|
79 |
+
total_norm += float(param_norm.item()) ** norm_type
|
80 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
81 |
+
|
82 |
+
return total_norm
|
rvc/onnx/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .infer import RVC
|
2 |
+
from .exporter import export_onnx
|
rvc/onnx/exporter.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from .synthesizer import SynthesizerTrnMsNSFsid
|
4 |
+
|
5 |
+
|
6 |
+
def export_onnx(from_cpkt_pth: str, to_onnx_pth: str) -> str:
|
7 |
+
cpt = torch.load(from_cpkt_pth, map_location="cpu")
|
8 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
9 |
+
vec_channels = 256 if cpt.get("version", "v1") == "v1" else 768
|
10 |
+
|
11 |
+
test_phone = torch.rand(1, 200, vec_channels) # hidden unit
|
12 |
+
test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
|
13 |
+
test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
|
14 |
+
test_pitchf = torch.rand(1, 200) # nsf基频
|
15 |
+
test_ds = torch.LongTensor([0]) # 说话人ID
|
16 |
+
test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
|
17 |
+
|
18 |
+
device = "cpu" # 导出时设备(不影响使用模型)
|
19 |
+
|
20 |
+
net_g = SynthesizerTrnMsNSFsid(
|
21 |
+
*cpt["config"], encoder_dim=vec_channels
|
22 |
+
) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
|
23 |
+
net_g.load_state_dict(cpt["weight"], strict=False)
|
24 |
+
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
25 |
+
output_names = [
|
26 |
+
"audio",
|
27 |
+
]
|
28 |
+
# net_g.construct_spkmixmap() #多角色混合轨道导出
|
29 |
+
torch.onnx.export(
|
30 |
+
net_g,
|
31 |
+
(
|
32 |
+
test_phone.to(device),
|
33 |
+
test_phone_lengths.to(device),
|
34 |
+
test_pitch.to(device),
|
35 |
+
test_pitchf.to(device),
|
36 |
+
test_ds.to(device),
|
37 |
+
test_rnd.to(device),
|
38 |
+
),
|
39 |
+
to_onnx_pth,
|
40 |
+
dynamic_axes={
|
41 |
+
"phone": [1],
|
42 |
+
"pitch": [1],
|
43 |
+
"pitchf": [1],
|
44 |
+
"rnd": [2],
|
45 |
+
},
|
46 |
+
do_constant_folding=False,
|
47 |
+
opset_version=17,
|
48 |
+
verbose=False,
|
49 |
+
input_names=input_names,
|
50 |
+
output_names=output_names,
|
51 |
+
)
|
52 |
+
return "Finished"
|
rvc/onnx/infer.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typing
|
2 |
+
import os
|
3 |
+
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import onnxruntime
|
7 |
+
|
8 |
+
from rvc.f0 import (
|
9 |
+
PM,
|
10 |
+
Harvest,
|
11 |
+
Dio,
|
12 |
+
F0Predictor,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
class Model:
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
path: typing.Union[str, bytes, os.PathLike],
|
20 |
+
device: typing.Literal["cpu", "cuda", "dml"] = "cpu",
|
21 |
+
):
|
22 |
+
if device == "cpu":
|
23 |
+
providers = ["CPUExecutionProvider"]
|
24 |
+
elif device == "cuda":
|
25 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
26 |
+
elif device == "dml":
|
27 |
+
providers = ["DmlExecutionProvider"]
|
28 |
+
else:
|
29 |
+
raise RuntimeError("Unsportted Device")
|
30 |
+
self.model = onnxruntime.InferenceSession(path, providers=providers)
|
31 |
+
|
32 |
+
|
33 |
+
class ContentVec(Model):
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
vec_path: typing.Union[str, bytes, os.PathLike],
|
37 |
+
device: typing.Literal["cpu", "cuda", "dml"] = "cpu",
|
38 |
+
):
|
39 |
+
super().__init__(vec_path, device)
|
40 |
+
|
41 |
+
def __call__(self, wav: np.ndarray[typing.Any, np.dtype]):
|
42 |
+
return self.forward(wav)
|
43 |
+
|
44 |
+
def forward(self, wav: np.ndarray[typing.Any, np.dtype]):
|
45 |
+
if wav.ndim == 2: # double channels
|
46 |
+
wav = wav.mean(-1)
|
47 |
+
assert wav.ndim == 1, wav.ndim
|
48 |
+
wav = np.expand_dims(np.expand_dims(wav, 0), 0)
|
49 |
+
onnx_input = {self.model.get_inputs()[0].name: wav}
|
50 |
+
logits = self.model.run(None, onnx_input)[0]
|
51 |
+
return logits.transpose(0, 2, 1)
|
52 |
+
|
53 |
+
|
54 |
+
predictors: typing.Dict[str, F0Predictor] = {
|
55 |
+
"pm": PM,
|
56 |
+
"harvest": Harvest,
|
57 |
+
"dio": Dio,
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
def get_f0_predictor(
|
62 |
+
f0_method: str, hop_length: int, sampling_rate: int
|
63 |
+
) -> F0Predictor:
|
64 |
+
return predictors[f0_method](hop_length=hop_length, sampling_rate=sampling_rate)
|
65 |
+
|
66 |
+
|
67 |
+
class RVC(Model):
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
model_path: typing.Union[str, bytes, os.PathLike],
|
71 |
+
hop_len=512,
|
72 |
+
vec_path: typing.Union[str, bytes, os.PathLike] = "vec-768-layer-12.onnx",
|
73 |
+
device: typing.Literal["cpu", "cuda", "dml"] = "cpu",
|
74 |
+
):
|
75 |
+
super().__init__(model_path, device)
|
76 |
+
self.vec_model = ContentVec(vec_path, device)
|
77 |
+
self.hop_len = hop_len
|
78 |
+
|
79 |
+
def infer(
|
80 |
+
self,
|
81 |
+
wav: np.ndarray[typing.Any, np.dtype],
|
82 |
+
wav_sr: int,
|
83 |
+
model_sr: int = 40000,
|
84 |
+
sid: int = 0,
|
85 |
+
f0_method="dio",
|
86 |
+
f0_up_key=0,
|
87 |
+
) -> np.ndarray[typing.Any, np.dtype[np.int16]]:
|
88 |
+
f0_min = 50
|
89 |
+
f0_max = 1100
|
90 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
91 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
92 |
+
f0_predictor = get_f0_predictor(
|
93 |
+
f0_method,
|
94 |
+
self.hop_len,
|
95 |
+
model_sr,
|
96 |
+
)
|
97 |
+
org_length = len(wav)
|
98 |
+
if org_length / wav_sr > 50.0:
|
99 |
+
raise RuntimeError("wav max length exceeded")
|
100 |
+
|
101 |
+
hubert = self.vec_model(librosa.resample(wav, orig_sr=wav_sr, target_sr=16000))
|
102 |
+
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
|
103 |
+
hubert_length = hubert.shape[1]
|
104 |
+
|
105 |
+
pitchf = f0_predictor.compute_f0(wav, hubert_length)
|
106 |
+
pitchf = pitchf * 2 ** (f0_up_key / 12)
|
107 |
+
pitch = pitchf.copy()
|
108 |
+
f0_mel = 1127 * np.log(1 + pitch / 700)
|
109 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
110 |
+
f0_mel_max - f0_mel_min
|
111 |
+
) + 1
|
112 |
+
f0_mel[f0_mel <= 1] = 1
|
113 |
+
f0_mel[f0_mel > 255] = 255
|
114 |
+
pitch = np.rint(f0_mel).astype(np.int64)
|
115 |
+
|
116 |
+
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
|
117 |
+
pitch = pitch.reshape(1, len(pitch))
|
118 |
+
ds = np.array([sid]).astype(np.int64)
|
119 |
+
|
120 |
+
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
|
121 |
+
hubert_length = np.array([hubert_length]).astype(np.int64)
|
122 |
+
|
123 |
+
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
|
124 |
+
|
125 |
+
out_wav = np.pad(out_wav, (0, 2 * self.hop_len), "constant")
|
126 |
+
|
127 |
+
return out_wav[0:org_length]
|
128 |
+
|
129 |
+
def forward(
|
130 |
+
self,
|
131 |
+
hubert: np.ndarray[typing.Any, np.dtype[np.float32]],
|
132 |
+
hubert_length: int,
|
133 |
+
pitch: np.ndarray[typing.Any, np.dtype[np.int64]],
|
134 |
+
pitchf: np.ndarray[typing.Any, np.dtype[np.float32]],
|
135 |
+
ds: np.ndarray[typing.Any, np.dtype[np.int64]],
|
136 |
+
rnd: np.ndarray[typing.Any, np.dtype[np.float32]],
|
137 |
+
) -> np.ndarray[typing.Any, np.dtype[np.int16]]:
|
138 |
+
onnx_input = {
|
139 |
+
self.model.get_inputs()[0].name: hubert,
|
140 |
+
self.model.get_inputs()[1].name: hubert_length,
|
141 |
+
self.model.get_inputs()[2].name: pitch,
|
142 |
+
self.model.get_inputs()[3].name: pitchf,
|
143 |
+
self.model.get_inputs()[4].name: ds,
|
144 |
+
self.model.get_inputs()[5].name: rnd,
|
145 |
+
}
|
146 |
+
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
|
rvc/onnx/synthesizer.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from rvc.layers.synthesizers import SynthesizerTrnMsNSFsid as SynthesizerBase
|
6 |
+
|
7 |
+
|
8 |
+
class SynthesizerTrnMsNSFsid(SynthesizerBase):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
spec_channels: int,
|
12 |
+
segment_size: int,
|
13 |
+
inter_channels: int,
|
14 |
+
hidden_channels: int,
|
15 |
+
filter_channels: int,
|
16 |
+
n_heads: int,
|
17 |
+
n_layers: int,
|
18 |
+
kernel_size: int,
|
19 |
+
p_dropout: int,
|
20 |
+
resblock: str,
|
21 |
+
resblock_kernel_sizes: List[int],
|
22 |
+
resblock_dilation_sizes: List[List[int]],
|
23 |
+
upsample_rates: List[int],
|
24 |
+
upsample_initial_channel: int,
|
25 |
+
upsample_kernel_sizes: List[int],
|
26 |
+
spk_embed_dim: int,
|
27 |
+
gin_channels: int,
|
28 |
+
sr: Optional[Union[str, int]],
|
29 |
+
encoder_dim: int,
|
30 |
+
):
|
31 |
+
super().__init__(
|
32 |
+
spec_channels,
|
33 |
+
segment_size,
|
34 |
+
inter_channels,
|
35 |
+
hidden_channels,
|
36 |
+
filter_channels,
|
37 |
+
n_heads,
|
38 |
+
n_layers,
|
39 |
+
kernel_size,
|
40 |
+
p_dropout,
|
41 |
+
resblock,
|
42 |
+
resblock_kernel_sizes,
|
43 |
+
resblock_dilation_sizes,
|
44 |
+
upsample_rates,
|
45 |
+
upsample_initial_channel,
|
46 |
+
upsample_kernel_sizes,
|
47 |
+
spk_embed_dim,
|
48 |
+
gin_channels,
|
49 |
+
sr,
|
50 |
+
encoder_dim,
|
51 |
+
True,
|
52 |
+
)
|
53 |
+
self.speaker_map = None
|
54 |
+
|
55 |
+
def remove_weight_norm(self):
|
56 |
+
self.dec.remove_weight_norm()
|
57 |
+
self.flow.remove_weight_norm()
|
58 |
+
self.enc_q.remove_weight_norm()
|
59 |
+
|
60 |
+
def construct_spkmixmap(self):
|
61 |
+
self.speaker_map = torch.zeros((self.n_speaker, 1, 1, self.gin_channels))
|
62 |
+
for i in range(self.n_speaker):
|
63 |
+
self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
|
64 |
+
self.speaker_map = self.speaker_map.unsqueeze(0)
|
65 |
+
|
66 |
+
def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
|
67 |
+
if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
|
68 |
+
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
|
69 |
+
g = g * self.speaker_map # [N, S, B, 1, H]
|
70 |
+
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
|
71 |
+
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
|
72 |
+
else:
|
73 |
+
g = g.unsqueeze(0)
|
74 |
+
g = self.emb_g(g).transpose(1, 2)
|
75 |
+
|
76 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
77 |
+
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
|
78 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
79 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
80 |
+
return o
|
rvc/synthesizer.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from .layers.synthesizers import SynthesizerTrnMsNSFsid
|
6 |
+
from .jit import load_inputs, export_jit_model, save_pickle
|
7 |
+
|
8 |
+
|
9 |
+
def get_synthesizer(cpt: OrderedDict, device=torch.device("cpu")):
|
10 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
11 |
+
if_f0 = cpt.get("f0", 1)
|
12 |
+
version = cpt.get("version", "v1")
|
13 |
+
if version == "v1":
|
14 |
+
encoder_dim = 256
|
15 |
+
elif version == "v2":
|
16 |
+
encoder_dim = 768
|
17 |
+
net_g = SynthesizerTrnMsNSFsid(
|
18 |
+
*cpt["config"],
|
19 |
+
encoder_dim=encoder_dim,
|
20 |
+
use_f0=if_f0 == 1,
|
21 |
+
)
|
22 |
+
del net_g.enc_q
|
23 |
+
net_g.load_state_dict(cpt["weight"], strict=False)
|
24 |
+
net_g = net_g.float()
|
25 |
+
net_g.eval().to(device)
|
26 |
+
net_g.remove_weight_norm()
|
27 |
+
return net_g, cpt
|
28 |
+
|
29 |
+
|
30 |
+
def load_synthesizer(
|
31 |
+
pth_path: torch.serialization.FILE_LIKE, device=torch.device("cpu")
|
32 |
+
):
|
33 |
+
return get_synthesizer(
|
34 |
+
torch.load(pth_path, map_location=torch.device("cpu")),
|
35 |
+
device,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def synthesizer_jit_export(
|
40 |
+
model_path: str,
|
41 |
+
mode: str = "script",
|
42 |
+
inputs_path: str = None,
|
43 |
+
save_path: str = None,
|
44 |
+
device=torch.device("cpu"),
|
45 |
+
is_half=False,
|
46 |
+
):
|
47 |
+
if not save_path:
|
48 |
+
save_path = model_path.rstrip(".pth")
|
49 |
+
save_path += ".half.jit" if is_half else ".jit"
|
50 |
+
if "cuda" in str(device) and ":" not in str(device):
|
51 |
+
device = torch.device("cuda:0")
|
52 |
+
from rvc.synthesizer import load_synthesizer
|
53 |
+
|
54 |
+
model, cpt = load_synthesizer(model_path, device)
|
55 |
+
assert isinstance(cpt, dict)
|
56 |
+
model.forward = model.infer
|
57 |
+
inputs = None
|
58 |
+
if mode == "trace":
|
59 |
+
inputs = load_inputs(inputs_path, device, is_half)
|
60 |
+
ckpt = export_jit_model(model, mode, inputs, device, is_half)
|
61 |
+
cpt.pop("weight")
|
62 |
+
cpt["model"] = ckpt["model"]
|
63 |
+
cpt["device"] = device
|
64 |
+
save_pickle(cpt, save_path)
|
65 |
+
return cpt
|