redshift51 commited on
Commit
8ae2b4d
1 Parent(s): 7091870

New PPO agent, LunarLander-v2

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 25.46 +/- 125.09
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2109e8e790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2109e8e820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2109e8e8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2109e8e940>", "_build": "<function ActorCriticPolicy._build at 0x7f2109e8e9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2109e8ea60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2109e8eaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2109e8eb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2109e8ec10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2109e8eca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2109e8ed30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2109e8b750>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652274310.6602917, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAMODmT4utJs7wC3ku5pky7hASAA9moO+NAAAgD8AAIA/YIeyPqolXb2rN/u6zJsZuO27Z76rQWa6AACAPwAAgD8A7Z28Hw2ouUHdQbyfLTQ8TAy8uoxKP7wAAIA/AACAPybrlr5PUV+8FWwIO93HDTl4dsI9cKAiugAAgD8AAIA/clmWvoi80D0sjB++f+6Gvv8Ji73SA8A9AAAAAAAAAABA88A99kQ6ulQ0mTvmZlU2elnLu4WXuLoAAIA/AACAPyYppr4n4Tu9HdW3uoergbl72YA+lQAmOgAAgD8AAIA/7U1FvgoPPTzV3XI5FeF0t3oMvr0RuZe4AACAPwAAgD+An4c9uP6Duf7Vlzw3FYm59GMCu3dniLgAAIA/AACAPwBlNb7klCA8wFlTO81rNrmMRqC9d0qBugAAgD8AAIA/AM5LPY/CTbjDaj69j/vIO4GW87rjBnu8AACAPwAAAABmNli7V9G2P9axwr1nMxw+SOcOPKZErj0AAAAAAAAAAOZigT1RPgs/YMIKvcltAb+vxa491g9wvAAAAAAAAAAAAJPmvVwLNLrfDZG6VXXKsyLK4jiXnag5AACAPwAAAAAmbMS97HpvP8q2Sr6i6v6+jzcBPbrQfb0AAAAAAAAAAE1Sh779hhg889ioO3w8VLmJr5C9uqFZugAAgD8AAIA/DhWrvoHM1byufo87O/BhuTOAAD56oiI7AACAPwAAgD9mnBW+b9qGPyqcyb6fBbS+6cK2PAx1mr0AAAAAAAAAAM37Tz/oweG9cCx9O1rvd7lOuJ69lqSPOgAAgD8AAIA/nujhvjbgdrxejWM6VfXAN/1EKj3BX4m5AACAPwAAgD9A97S9uEbquRIozDi/ZQG2Dizkt/aL67cAAAAAAACAP83Bjj2PflK6tNPGOfHX6DjDM4u62ML+uAAAgD8AAIA/E0ewPr+5RT+wGpM+aWEEv6cCUj6a+yy9AAAAAAAAAADmqUW/UQ9qvvVCzjlr0uy382U9PQGBrTgAAIA/AACAP4X6i75g+JA+5g0CvsZhfr7hdh09Ii1vvQAAAAAAAAAAWoXkPXv03rgUfoy7ezSOu2AHjzt+ZHi8AACAPwAAgD+aCrs99jh8umuleTx2SlQ7HH39ut4vZbsAAIA/AACAP8qW8T5CscO9UEJxPhvRIL1SU4a+Up9XvAAAgD8AAIA/zb7bPcM1PLp1Itg68W5rNprnaTvt9/m5AACAPwAAgD86F6I+9kEEvAr7GrwsvSs8B90uvUPafbwAAIA/AACAP5pmwjwwpLQ/H24XP7kzEr2unMy82wC8vQAAAAAAAAAAOtkrPnpo7T4QxBk9AaeVvkwLrz0z/Em7AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlPlH36SJDUCUhpRSlIwBbJRN6AOMAXSUR0CR24YRujyndX2UKGgGaAloD0MI2jnNAu3uL0CUhpRSlGgVTegDaBZHQJHc7l5nlGR1fZQoaAZoCWgPQwh5P26/fL5GQJSGlFKUaBVN6ANoFkdAkeClNg0CR3V9lChoBmgJaA9DCGsMOiF0MAfAlIaUUpRoFUt/aBZHQJHg5O1v2oN1fZQoaAZoCWgPQwjqsS0DzrJAwJSGlFKUaBVLc2gWR0CR4RKPXCj2dX2UKGgGaAloD0MIGEM50a4iEcCUhpRSlGgVS6VoFkdAkeGSXdCVr3V9lChoBmgJaA9DCDPeVnptcEpAlIaUUpRoFU3oA2gWR0CR4jqTbFjvdX2UKGgGaAloD0MIP62iPzRjMsCUhpRSlGgVS6ZoFkdAkeKPI4lyBHV9lChoBmgJaA9DCB2u1R72zEbAlIaUUpRoFU0vAWgWR0CR5G2Dxsl+dX2UKGgGaAloD0MIPl5Ih4eAI8CUhpRSlGgVS6ZoFkdAkeSVYuCf6HV9lChoBmgJaA9DCPmGwmfrECZAlIaUUpRoFUuraBZHQJHk6jCYTkB1fZQoaAZoCWgPQwiXb31Yb2RAQJSGlFKUaBVLmmgWR0CR5/kQPI4mdX2UKGgGaAloD0MIVS5U/rWZVkCUhpRSlGgVTegDaBZHQJHo3XDm8ul1fZQoaAZoCWgPQwjcD3hgAMkiQJSGlFKUaBVLp2gWR0CR6wPPszEadX2UKGgGaAloD0MIl6lJ8IYcQUCUhpRSlGgVS9doFkdAkewRfrrxAnV9lChoBmgJaA9DCMfUXdmFyWDAlIaUUpRoFUuKaBZHQJHsmY+jdpJ1fZQoaAZoCWgPQwgFpWjlXtA+QJSGlFKUaBVLr2gWR0CR8DyhzvJBdX2UKGgGaAloD0MIYJSgv9CSX8CUhpRSlGgVTU4BaBZHQJHxGnk1dgR1fZQoaAZoCWgPQwj0TZoGRds2QJSGlFKUaBVLpGgWR0CR8zJXyRSxdX2UKGgGaAloD0MI3jgpzHvtVkCUhpRSlGgVTegDaBZHQJH00+FDfFd1fZQoaAZoCWgPQwjk84qnHj1GQJSGlFKUaBVN6ANoFkdAkfV++Eh7mnV9lChoBmgJaA9DCLvVc9L70FJAlIaUUpRoFU3oA2gWR0CR/bpw0fozdX2UKGgGaAloD0MIWK1M+KWCMkCUhpRSlGgVS7FoFkdAkf5pgw482nV9lChoBmgJaA9DCPmekQiN71hAlIaUUpRoFU3oA2gWR0CSACJzkp7UdX2UKGgGaAloD0MIrrZif9k9w7+UhpRSlGgVS4FoFkdAkgDFjVhCt3V9lChoBmgJaA9DCEfmkT8YSEJAlIaUUpRoFUuQaBZHQJIE4o1DSgJ1fZQoaAZoCWgPQwiLUdfa+21twJSGlFKUaBVNTgFoFkdAkgV6MaS9unV9lChoBmgJaA9DCMsPXOUJwFtAlIaUUpRoFU3oA2gWR0CSCLPXCj1xdX2UKGgGaAloD0MImgtcHmsSWECUhpRSlGgVTegDaBZHQJIJmKZUkv91fZQoaAZoCWgPQwhrniPyXa44QJSGlFKUaBVN6ANoFkdAkhBESyt3fXV9lChoBmgJaA9DCHL5D+m370ZAlIaUUpRoFUupaBZHQJIQetknTiN1fZQoaAZoCWgPQwg3NjtSffVewJSGlFKUaBVNLgFoFkdAkhCfmYBvJnV9lChoBmgJaA9DCIkjD0QWuT9AlIaUUpRoFUupaBZHQJIS0RHww0x1fZQoaAZoCWgPQwiMSBRa1nkxwJSGlFKUaBVLo2gWR0CSEtOby6MBdX2UKGgGaAloD0MI/KcbKPBCPECUhpRSlGgVS5JoFkdAkhUcY2sJY3V9lChoBmgJaA9DCEGchxOYNF5AlIaUUpRoFU3oA2gWR0CSGTW43FUAdX2UKGgGaAloD0MIL/g0J68IZUCUhpRSlGgVTegDaBZHQJIbpzfaYeF1fZQoaAZoCWgPQwh0JQLVPzggQJSGlFKUaBVLzWgWR0CSH3GVAzHkdX2UKGgGaAloD0MI0F59PPTd6L+UhpRSlGgVS8poFkdAkh//fwZwXXV9lChoBmgJaA9DCF/Tg4JSVAVAlIaUUpRoFUuNaBZHQJIidETg2qF1fZQoaAZoCWgPQwgUIuAQqvwrQJSGlFKUaBVLt2gWR0CSJMo0ALiNdX2UKGgGaAloD0MIu/CD86mrLUCUhpRSlGgVS2loFkdAkiUG9g4OtnV9lChoBmgJaA9DCE90XfjBIU7AlIaUUpRoFUu/aBZHQJIoarIYFaB1fZQoaAZoCWgPQwh0J9h/nXlJQJSGlFKUaBVN6ANoFkdAkirbayrxRXV9lChoBmgJaA9DCAKdSZuq2w1AlIaUUpRoFUutaBZHQJIvn6ZYxL11fZQoaAZoCWgPQwiZ84x9yd5iwJSGlFKUaBVNMgFoFkdAkjO4hMajvnV9lChoBmgJaA9DCJF++zpwFlJAlIaUUpRoFU3oA2gWR0CSNc4qPOpsdX2UKGgGaAloD0MIccgG0sU2PkCUhpRSlGgVTegDaBZHQJI4ywwCbMJ1fZQoaAZoCWgPQwhihsYTQZQkwJSGlFKUaBVLxmgWR0CSOoOmR/3GdX2UKGgGaAloD0MIW5VE9kFuV0CUhpRSlGgVTegDaBZHQJI6uf16E8J1fZQoaAZoCWgPQwgoDMo0mrwfQJSGlFKUaBVLmGgWR0CSOvrVe8f3dX2UKGgGaAloD0MIqFfKMsTtW0CUhpRSlGgVTegDaBZHQJI8qBK+SKZ1fZQoaAZoCWgPQwjjNEQV/vtfQJSGlFKUaBVN6ANoFkdAkkAV1wHZ9XV9lChoBmgJaA9DCIqryr4rYELAlIaUUpRoFUuOaBZHQJJBAJKJ2uB1fZQoaAZoCWgPQwiuug7VlF9ZQJSGlFKUaBVN6ANoFkdAkl+kcfeUIXV9lChoBmgJaA9DCAslk1O7cmFAlIaUUpRoFU3oA2gWR0CSX7E2pAD8dX2UKGgGaAloD0MIF5zB3y8lUECUhpRSlGgVTegDaBZHQJJg4qmTC+F1fZQoaAZoCWgPQwjdQIF38mEpwJSGlFKUaBVLkmgWR0CSZHfoA4n4dX2UKGgGaAloD0MI5lq0AG1NRkCUhpRSlGgVS49oFkdAkmYrjT8YRHV9lChoBmgJaA9DCDjYmxiS11pAlIaUUpRoFU3oA2gWR0CSZ45SFXaKdX2UKGgGaAloD0MIN+FembeRUECUhpRSlGgVTegDaBZHQJJou3x4IKN1fZQoaAZoCWgPQwiZEkn0MsJfQJSGlFKUaBVN6ANoFkdAkmmUf5k9U3V9lChoBmgJaA9DCNaLoZxot1pAlIaUUpRoFU3oA2gWR0CSaghG6PKddX2UKGgGaAloD0MIdJXurrPRG0CUhpRSlGgVS9BoFkdAkmy/JV81GnV9lChoBmgJaA9DCBBZpIl3ulRAlIaUUpRoFU3oA2gWR0CSbN2aUiY+dX2UKGgGaAloD0MIn69ZLhsXW0CUhpRSlGgVTegDaBZHQJJweMdcSoR1fZQoaAZoCWgPQwj/sRAdAuNaQJSGlFKUaBVN6ANoFkdAknGTkU9IPXV9lChoBmgJaA9DCE4K8x5njF5AlIaUUpRoFU3oA2gWR0CSc/cCo0hvdX2UKGgGaAloD0MILv8h/XbZZMCUhpRSlGgVTc4BaBZHQJJ0P2f02+B1fZQoaAZoCWgPQwhdo+VAD4pTQJSGlFKUaBVN6ANoFkdAknUOCPIXCXV9lChoBmgJaA9DCK33G+04nmTAlIaUUpRoFU2/AWgWR0CSd1bz9S/CdX2UKGgGaAloD0MI0zB8REwBKUCUhpRSlGgVS71oFkdAknjsgdOqN3V9lChoBmgJaA9DCKMjufyHZkJAlIaUUpRoFUuIaBZHQJJ53UsnRb91fZQoaAZoCWgPQwhxAtNp3fxfQJSGlFKUaBVN6ANoFkdAknoNUsFt9HV9lChoBmgJaA9DCDVB1H2AXGBAlIaUUpRoFU3oA2gWR0CSfYsQNCqqdX2UKGgGaAloD0MI7x6g+3LIUMCUhpRSlGgVS9BoFkdAkn4EvCdjG3V9lChoBmgJaA9DCBFV+DO8D0dAlIaUUpRoFUuUaBZHQJJ+jlnyup11fZQoaAZoCWgPQwju7ZbkgOEzQJSGlFKUaBVLp2gWR0CSg7A/LTx5dX2UKGgGaAloD0MI1jkGZK+pYUCUhpRSlGgVTegDaBZHQJKGljQRf4R1fZQoaAZoCWgPQwholZnS+hszwJSGlFKUaBVLpGgWR0CSig3ljmSydX2UKGgGaAloD0MIJ2co7niLJMCUhpRSlGgVS8poFkdAko0dL6DXe3V9lChoBmgJaA9DCJxpwvaT4UVAlIaUUpRoFU3oA2gWR0CSjW5cC5mRdX2UKGgGaAloD0MIHOxNDMnpK0CUhpRSlGgVS29oFkdAko90wJw84nV9lChoBmgJaA9DCHpuoSsRRDNAlIaUUpRoFUvFaBZHQJKR5+4LCvZ1fZQoaAZoCWgPQwiCHf8FgjFhQJSGlFKUaBVN6ANoFkdAkpkvMjeKsXV9lChoBmgJaA9DCIXsvI1N7GNAlIaUUpRoFU3oA2gWR0CSnl7jT8YRdX2UKGgGaAloD0MIxuHMr+agEkCUhpRSlGgVS7BoFkdAkqKebutwJnV9lChoBmgJaA9DCKJESx5PWzFAlIaUUpRoFUvtaBZHQJKmwREnb7F1fZQoaAZoCWgPQwiwrgrUYtBVQJSGlFKUaBVN6ANoFkdAkqpbWmP5pXV9lChoBmgJaA9DCKjg8IIIS2FAlIaUUpRoFU3oA2gWR0CSqvwBYFJQdX2UKGgGaAloD0MIyXTo9Lx5QkCUhpRSlGgVTegDaBZHQJKwF1PnB+F1fZQoaAZoCWgPQwiR8SiV8BJXQJSGlFKUaBVN6ANoFkdAksB4HC4z8HV9lChoBmgJaA9DCEzGMZI961tAlIaUUpRoFU3oA2gWR0CSwtSdvsJIdX2UKGgGaAloD0MIDXBBtizkUUCUhpRSlGgVTegDaBZHQJLIQr5IpYt1fZQoaAZoCWgPQwir6uV3mkxIQJSGlFKUaBVLvmgWR0CSybVOKwY+dX2UKGgGaAloD0MIUMjO29jlXECUhpRSlGgVTegDaBZHQJLKq10DEFZ1fZQoaAZoCWgPQwgvi4nNx45VQJSGlFKUaBVN6ANoFkdAks6NiQT24HV9lChoBmgJaA9DCFFsBU1LmldAlIaUUpRoFU3oA2gWR0CSz5wBHTZydX2UKGgGaAloD0MICTauf9fDWUCUhpRSlGgVTegDaBZHQJLUGdhAnlZ1fZQoaAZoCWgPQwiSy39Iv99GQJSGlFKUaBVN6ANoFkdAktQlxXGOuXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 64, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-4.15.0-45-generic-x86_64-with-glibc2.27 #48~16.04.1-Ubuntu SMP Tue Jan 29 18:03:48 UTC 2019", "Python": "3.8.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}
ppo-1-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f3334eca8982179161fb41893766156811b9ab83b10333887a3a6d4694391da
3
+ size 144330
ppo-1-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-1-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2109e8e790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2109e8e820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2109e8e8b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2109e8e940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2109e8e9d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2109e8ea60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2109e8eaf0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2109e8eb80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2109e8ec10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2109e8eca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2109e8ed30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2109e8b750>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 32,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652274310.6602917,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAMODmT4utJs7wC3ku5pky7hASAA9moO+NAAAgD8AAIA/YIeyPqolXb2rN/u6zJsZuO27Z76rQWa6AACAPwAAgD8A7Z28Hw2ouUHdQbyfLTQ8TAy8uoxKP7wAAIA/AACAPybrlr5PUV+8FWwIO93HDTl4dsI9cKAiugAAgD8AAIA/clmWvoi80D0sjB++f+6Gvv8Ji73SA8A9AAAAAAAAAABA88A99kQ6ulQ0mTvmZlU2elnLu4WXuLoAAIA/AACAPyYppr4n4Tu9HdW3uoergbl72YA+lQAmOgAAgD8AAIA/7U1FvgoPPTzV3XI5FeF0t3oMvr0RuZe4AACAPwAAgD+An4c9uP6Duf7Vlzw3FYm59GMCu3dniLgAAIA/AACAPwBlNb7klCA8wFlTO81rNrmMRqC9d0qBugAAgD8AAIA/AM5LPY/CTbjDaj69j/vIO4GW87rjBnu8AACAPwAAAABmNli7V9G2P9axwr1nMxw+SOcOPKZErj0AAAAAAAAAAOZigT1RPgs/YMIKvcltAb+vxa491g9wvAAAAAAAAAAAAJPmvVwLNLrfDZG6VXXKsyLK4jiXnag5AACAPwAAAAAmbMS97HpvP8q2Sr6i6v6+jzcBPbrQfb0AAAAAAAAAAE1Sh779hhg889ioO3w8VLmJr5C9uqFZugAAgD8AAIA/DhWrvoHM1byufo87O/BhuTOAAD56oiI7AACAPwAAgD9mnBW+b9qGPyqcyb6fBbS+6cK2PAx1mr0AAAAAAAAAAM37Tz/oweG9cCx9O1rvd7lOuJ69lqSPOgAAgD8AAIA/nujhvjbgdrxejWM6VfXAN/1EKj3BX4m5AACAPwAAgD9A97S9uEbquRIozDi/ZQG2Dizkt/aL67cAAAAAAACAP83Bjj2PflK6tNPGOfHX6DjDM4u62ML+uAAAgD8AAIA/E0ewPr+5RT+wGpM+aWEEv6cCUj6a+yy9AAAAAAAAAADmqUW/UQ9qvvVCzjlr0uy382U9PQGBrTgAAIA/AACAP4X6i75g+JA+5g0CvsZhfr7hdh09Ii1vvQAAAAAAAAAAWoXkPXv03rgUfoy7ezSOu2AHjzt+ZHi8AACAPwAAgD+aCrs99jh8umuleTx2SlQ7HH39ut4vZbsAAIA/AACAP8qW8T5CscO9UEJxPhvRIL1SU4a+Up9XvAAAgD8AAIA/zb7bPcM1PLp1Itg68W5rNprnaTvt9/m5AACAPwAAgD86F6I+9kEEvAr7GrwsvSs8B90uvUPafbwAAIA/AACAP5pmwjwwpLQ/H24XP7kzEr2unMy82wC8vQAAAAAAAAAAOtkrPnpo7T4QxBk9AaeVvkwLrz0z/Em7AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlPlH36SJDUCUhpRSlIwBbJRN6AOMAXSUR0CR24YRujyndX2UKGgGaAloD0MI2jnNAu3uL0CUhpRSlGgVTegDaBZHQJHc7l5nlGR1fZQoaAZoCWgPQwh5P26/fL5GQJSGlFKUaBVN6ANoFkdAkeClNg0CR3V9lChoBmgJaA9DCGsMOiF0MAfAlIaUUpRoFUt/aBZHQJHg5O1v2oN1fZQoaAZoCWgPQwjqsS0DzrJAwJSGlFKUaBVLc2gWR0CR4RKPXCj2dX2UKGgGaAloD0MIGEM50a4iEcCUhpRSlGgVS6VoFkdAkeGSXdCVr3V9lChoBmgJaA9DCDPeVnptcEpAlIaUUpRoFU3oA2gWR0CR4jqTbFjvdX2UKGgGaAloD0MIP62iPzRjMsCUhpRSlGgVS6ZoFkdAkeKPI4lyBHV9lChoBmgJaA9DCB2u1R72zEbAlIaUUpRoFU0vAWgWR0CR5G2Dxsl+dX2UKGgGaAloD0MIPl5Ih4eAI8CUhpRSlGgVS6ZoFkdAkeSVYuCf6HV9lChoBmgJaA9DCPmGwmfrECZAlIaUUpRoFUuraBZHQJHk6jCYTkB1fZQoaAZoCWgPQwiXb31Yb2RAQJSGlFKUaBVLmmgWR0CR5/kQPI4mdX2UKGgGaAloD0MIVS5U/rWZVkCUhpRSlGgVTegDaBZHQJHo3XDm8ul1fZQoaAZoCWgPQwjcD3hgAMkiQJSGlFKUaBVLp2gWR0CR6wPPszEadX2UKGgGaAloD0MIl6lJ8IYcQUCUhpRSlGgVS9doFkdAkewRfrrxAnV9lChoBmgJaA9DCMfUXdmFyWDAlIaUUpRoFUuKaBZHQJHsmY+jdpJ1fZQoaAZoCWgPQwgFpWjlXtA+QJSGlFKUaBVLr2gWR0CR8DyhzvJBdX2UKGgGaAloD0MIYJSgv9CSX8CUhpRSlGgVTU4BaBZHQJHxGnk1dgR1fZQoaAZoCWgPQwj0TZoGRds2QJSGlFKUaBVLpGgWR0CR8zJXyRSxdX2UKGgGaAloD0MI3jgpzHvtVkCUhpRSlGgVTegDaBZHQJH00+FDfFd1fZQoaAZoCWgPQwjk84qnHj1GQJSGlFKUaBVN6ANoFkdAkfV++Eh7mnV9lChoBmgJaA9DCLvVc9L70FJAlIaUUpRoFU3oA2gWR0CR/bpw0fozdX2UKGgGaAloD0MIWK1M+KWCMkCUhpRSlGgVS7FoFkdAkf5pgw482nV9lChoBmgJaA9DCPmekQiN71hAlIaUUpRoFU3oA2gWR0CSACJzkp7UdX2UKGgGaAloD0MIrrZif9k9w7+UhpRSlGgVS4FoFkdAkgDFjVhCt3V9lChoBmgJaA9DCEfmkT8YSEJAlIaUUpRoFUuQaBZHQJIE4o1DSgJ1fZQoaAZoCWgPQwiLUdfa+21twJSGlFKUaBVNTgFoFkdAkgV6MaS9unV9lChoBmgJaA9DCMsPXOUJwFtAlIaUUpRoFU3oA2gWR0CSCLPXCj1xdX2UKGgGaAloD0MImgtcHmsSWECUhpRSlGgVTegDaBZHQJIJmKZUkv91fZQoaAZoCWgPQwhrniPyXa44QJSGlFKUaBVN6ANoFkdAkhBESyt3fXV9lChoBmgJaA9DCHL5D+m370ZAlIaUUpRoFUupaBZHQJIQetknTiN1fZQoaAZoCWgPQwg3NjtSffVewJSGlFKUaBVNLgFoFkdAkhCfmYBvJnV9lChoBmgJaA9DCIkjD0QWuT9AlIaUUpRoFUupaBZHQJIS0RHww0x1fZQoaAZoCWgPQwiMSBRa1nkxwJSGlFKUaBVLo2gWR0CSEtOby6MBdX2UKGgGaAloD0MI/KcbKPBCPECUhpRSlGgVS5JoFkdAkhUcY2sJY3V9lChoBmgJaA9DCEGchxOYNF5AlIaUUpRoFU3oA2gWR0CSGTW43FUAdX2UKGgGaAloD0MIL/g0J68IZUCUhpRSlGgVTegDaBZHQJIbpzfaYeF1fZQoaAZoCWgPQwh0JQLVPzggQJSGlFKUaBVLzWgWR0CSH3GVAzHkdX2UKGgGaAloD0MI0F59PPTd6L+UhpRSlGgVS8poFkdAkh//fwZwXXV9lChoBmgJaA9DCF/Tg4JSVAVAlIaUUpRoFUuNaBZHQJIidETg2qF1fZQoaAZoCWgPQwgUIuAQqvwrQJSGlFKUaBVLt2gWR0CSJMo0ALiNdX2UKGgGaAloD0MIu/CD86mrLUCUhpRSlGgVS2loFkdAkiUG9g4OtnV9lChoBmgJaA9DCE90XfjBIU7AlIaUUpRoFUu/aBZHQJIoarIYFaB1fZQoaAZoCWgPQwh0J9h/nXlJQJSGlFKUaBVN6ANoFkdAkirbayrxRXV9lChoBmgJaA9DCAKdSZuq2w1AlIaUUpRoFUutaBZHQJIvn6ZYxL11fZQoaAZoCWgPQwiZ84x9yd5iwJSGlFKUaBVNMgFoFkdAkjO4hMajvnV9lChoBmgJaA9DCJF++zpwFlJAlIaUUpRoFU3oA2gWR0CSNc4qPOpsdX2UKGgGaAloD0MIccgG0sU2PkCUhpRSlGgVTegDaBZHQJI4ywwCbMJ1fZQoaAZoCWgPQwhihsYTQZQkwJSGlFKUaBVLxmgWR0CSOoOmR/3GdX2UKGgGaAloD0MIW5VE9kFuV0CUhpRSlGgVTegDaBZHQJI6uf16E8J1fZQoaAZoCWgPQwgoDMo0mrwfQJSGlFKUaBVLmGgWR0CSOvrVe8f3dX2UKGgGaAloD0MIqFfKMsTtW0CUhpRSlGgVTegDaBZHQJI8qBK+SKZ1fZQoaAZoCWgPQwjjNEQV/vtfQJSGlFKUaBVN6ANoFkdAkkAV1wHZ9XV9lChoBmgJaA9DCIqryr4rYELAlIaUUpRoFUuOaBZHQJJBAJKJ2uB1fZQoaAZoCWgPQwiuug7VlF9ZQJSGlFKUaBVN6ANoFkdAkl+kcfeUIXV9lChoBmgJaA9DCAslk1O7cmFAlIaUUpRoFU3oA2gWR0CSX7E2pAD8dX2UKGgGaAloD0MIF5zB3y8lUECUhpRSlGgVTegDaBZHQJJg4qmTC+F1fZQoaAZoCWgPQwjdQIF38mEpwJSGlFKUaBVLkmgWR0CSZHfoA4n4dX2UKGgGaAloD0MI5lq0AG1NRkCUhpRSlGgVS49oFkdAkmYrjT8YRHV9lChoBmgJaA9DCDjYmxiS11pAlIaUUpRoFU3oA2gWR0CSZ45SFXaKdX2UKGgGaAloD0MIN+FembeRUECUhpRSlGgVTegDaBZHQJJou3x4IKN1fZQoaAZoCWgPQwiZEkn0MsJfQJSGlFKUaBVN6ANoFkdAkmmUf5k9U3V9lChoBmgJaA9DCNaLoZxot1pAlIaUUpRoFU3oA2gWR0CSaghG6PKddX2UKGgGaAloD0MIdJXurrPRG0CUhpRSlGgVS9BoFkdAkmy/JV81GnV9lChoBmgJaA9DCBBZpIl3ulRAlIaUUpRoFU3oA2gWR0CSbN2aUiY+dX2UKGgGaAloD0MIn69ZLhsXW0CUhpRSlGgVTegDaBZHQJJweMdcSoR1fZQoaAZoCWgPQwj/sRAdAuNaQJSGlFKUaBVN6ANoFkdAknGTkU9IPXV9lChoBmgJaA9DCE4K8x5njF5AlIaUUpRoFU3oA2gWR0CSc/cCo0hvdX2UKGgGaAloD0MILv8h/XbZZMCUhpRSlGgVTc4BaBZHQJJ0P2f02+B1fZQoaAZoCWgPQwhdo+VAD4pTQJSGlFKUaBVN6ANoFkdAknUOCPIXCXV9lChoBmgJaA9DCK33G+04nmTAlIaUUpRoFU2/AWgWR0CSd1bz9S/CdX2UKGgGaAloD0MI0zB8REwBKUCUhpRSlGgVS71oFkdAknjsgdOqN3V9lChoBmgJaA9DCKMjufyHZkJAlIaUUpRoFUuIaBZHQJJ53UsnRb91fZQoaAZoCWgPQwhxAtNp3fxfQJSGlFKUaBVN6ANoFkdAknoNUsFt9HV9lChoBmgJaA9DCDVB1H2AXGBAlIaUUpRoFU3oA2gWR0CSfYsQNCqqdX2UKGgGaAloD0MI7x6g+3LIUMCUhpRSlGgVS9BoFkdAkn4EvCdjG3V9lChoBmgJaA9DCBFV+DO8D0dAlIaUUpRoFUuUaBZHQJJ+jlnyup11fZQoaAZoCWgPQwju7ZbkgOEzQJSGlFKUaBVLp2gWR0CSg7A/LTx5dX2UKGgGaAloD0MI1jkGZK+pYUCUhpRSlGgVTegDaBZHQJKGljQRf4R1fZQoaAZoCWgPQwholZnS+hszwJSGlFKUaBVLpGgWR0CSig3ljmSydX2UKGgGaAloD0MIJ2co7niLJMCUhpRSlGgVS8poFkdAko0dL6DXe3V9lChoBmgJaA9DCJxpwvaT4UVAlIaUUpRoFU3oA2gWR0CSjW5cC5mRdX2UKGgGaAloD0MIHOxNDMnpK0CUhpRSlGgVS29oFkdAko90wJw84nV9lChoBmgJaA9DCHpuoSsRRDNAlIaUUpRoFUvFaBZHQJKR5+4LCvZ1fZQoaAZoCWgPQwiCHf8FgjFhQJSGlFKUaBVN6ANoFkdAkpkvMjeKsXV9lChoBmgJaA9DCIXsvI1N7GNAlIaUUpRoFU3oA2gWR0CSnl7jT8YRdX2UKGgGaAloD0MIxuHMr+agEkCUhpRSlGgVS7BoFkdAkqKebutwJnV9lChoBmgJaA9DCKJESx5PWzFAlIaUUpRoFUvtaBZHQJKmwREnb7F1fZQoaAZoCWgPQwiwrgrUYtBVQJSGlFKUaBVN6ANoFkdAkqpbWmP5pXV9lChoBmgJaA9DCKjg8IIIS2FAlIaUUpRoFU3oA2gWR0CSqvwBYFJQdX2UKGgGaAloD0MIyXTo9Lx5QkCUhpRSlGgVTegDaBZHQJKwF1PnB+F1fZQoaAZoCWgPQwiR8SiV8BJXQJSGlFKUaBVN6ANoFkdAksB4HC4z8HV9lChoBmgJaA9DCEzGMZI961tAlIaUUpRoFU3oA2gWR0CSwtSdvsJIdX2UKGgGaAloD0MIDXBBtizkUUCUhpRSlGgVTegDaBZHQJLIQr5IpYt1fZQoaAZoCWgPQwir6uV3mkxIQJSGlFKUaBVLvmgWR0CSybVOKwY+dX2UKGgGaAloD0MIUMjO29jlXECUhpRSlGgVTegDaBZHQJLKq10DEFZ1fZQoaAZoCWgPQwgvi4nNx45VQJSGlFKUaBVN6ANoFkdAks6NiQT24HV9lChoBmgJaA9DCFFsBU1LmldAlIaUUpRoFU3oA2gWR0CSz5wBHTZydX2UKGgGaAloD0MICTauf9fDWUCUhpRSlGgVTegDaBZHQJLUGdhAnlZ1fZQoaAZoCWgPQwiSy39Iv99GQJSGlFKUaBVN6ANoFkdAktQlxXGOuXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 64,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-1-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67a09a7b6bbb6b15ebce956e9813c6f32fc8c036960161aa1c455a7ee3b019b4
3
+ size 84573
ppo-1-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8c6761deaef1a98c7922ce184bbf954942e2ff3beb244e3c6c17232b14b9e37
3
+ size 43073
ppo-1-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-1-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-4.15.0-45-generic-x86_64-with-glibc2.27 #48~16.04.1-Ubuntu SMP Tue Jan 29 18:03:48 UTC 2019
2
+ Python: 3.8.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: False
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96195df38f18c7664f7692917c95721a6a03d0d59df824bb0040c7253c6df994
3
+ size 251950
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 25.46152601606091, "std_reward": 125.09004107666337, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T13:20:02.598755"}