metadata
base_model:
- microsoft/Florence-2-base-ft
datasets:
- salma-remyx/PoseText
library_name: transformers
tags:
- remyx
- PoseEstimation
- TextGeneration
- MultiModal
- VLM
Model Card for PoseFlorence-2
This model fine-tunes Florence-2-base-ft in the POSE task for body keypoint estimation using the PoseText Dataset.
Running PoseFlorence-2
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForCausalLM.from_pretrained("remyxai/PoseeFlorence-2", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("remyxai/PoseFlorence-2", trust_remote_code=True)
prompt = "<POSE>"
url = "https://remyx.ai/assets/spatialvlm/warehouse_rgb.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task="<SpatialVQA>", image_size=(image.width, image.height))
print(parsed_answer)
- Developed by: [remyx.ai]
- Finetuned from model: [microsoft/Florence-2-base-ft]