File size: 3,651 Bytes
3023cac dff0a68 3023cac dff0a68 3023cac dff0a68 3023cac ce40c8b 3023cac ce40c8b 3023cac ce40c8b 3023cac ce40c8b 3023cac ce40c8b 3023cac dff0a68 3023cac dff0a68 3023cac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 1"
- text: "Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 2"
- text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/bart-base-squad-no-paragraph
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.2386146591654172
- name: ROUGE-L
type: rouge-l
value: 0.5142752621919274
- name: METEOR
type: meteor
value: 0.2518149650657295
- name: BERTScore
type: bertscore
value: 0.9070136075591869
- name: MoverScore
type: moverscore
value: 0.6384645408685703
---
# Language Models Fine-tuning on Question Generation: `lmqg/bart-base-squad-no-paragraph`
This model is fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) for question generation task on the
[lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default).
This model is fine-tuned without pargraph information but only the sentence that contains the answer.
### Overview
- **Language model:** [facebook/bart-base](https://huggingface.co/facebook/bart-base)
- **Language:** en
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [TBA](TBA)
### Usage
```python
from transformers import pipeline
model_path = 'lmqg/bart-base-squad-no-paragraph'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
question = pipe('<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.')
```
## Evaluation Metrics
### Metrics
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | default | 0.239 | 0.514 | 0.252 | 0.907 | 0.638 | [link](https://huggingface.co/lmqg/bart-base-squad-no-paragraph/raw/main/eval/metric.first.sentence.sentence_answer.question.lmqg_qg_squad.default.json) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['sentence_answer']
- output_types: ['question']
- prefix_types: None
- model: facebook/bart-base
- max_length: 128
- max_length_output: 32
- epoch: 3
- batch: 64
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-base-squad-no-paragraph/raw/main/trainer_config.json).
## Citation
TBA
|