--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qg_subjqa pipeline_tag: text2text-generation tags: - question generation widget: - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 1" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 2" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records ." example_title: "Question Generation Example 3" model-index: - name: lmqg/bart-base-subjqa-vanilla-movies results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_subjqa type: movies args: movies metrics: - name: BLEU4 type: bleu4 value: 1.146037717373066e-06 - name: ROUGE-L type: rouge-l value: 0.20322881868683584 - name: METEOR type: meteor value: 0.17164967153932714 - name: BERTScore type: bertscore value: 0.9141060315169297 - name: MoverScore type: moverscore value: 0.594084815785369 --- # Language Models Fine-tuning on Question Generation: `lmqg/bart-base-subjqa-vanilla-movies` This model is fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) for question generation task on the [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: movies). ### Overview - **Language model:** [facebook/bart-base](https://huggingface.co/facebook/bart-base) - **Language:** en - **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (movies) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [TBA](TBA) ### Usage ```python from transformers import pipeline model_path = 'lmqg/bart-base-subjqa-vanilla-movies' pipe = pipeline("text2text-generation", model_path) # Question Generation input_text = 'generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.' question = pipe(input_text) ``` ## Evaluation Metrics ### Metrics | Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link | |:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:| | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | movies | 1.146037717373066e-06 | 0.20322881868683584 | 0.17164967153932714 | 0.9141060315169297 | 0.594084815785369 | [link](https://huggingface.co/lmqg/bart-base-subjqa-vanilla-movies/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.movies.json) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_subjqa - dataset_name: movies - input_types: ['paragraph_answer'] - output_types: ['question'] - prefix_types: ['qg'] - model: facebook/bart-base - max_length: 512 - max_length_output: 32 - epoch: 1 - batch: 8 - lr: 5e-05 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 16 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-base-subjqa-vanilla-movies/raw/main/trainer_config.json). ## Citation TBA