File size: 4,900 Bytes
7f38a3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 1"
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
example_title: "Question Generation Example 2"
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/bart-large-subjqa-movies
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: movies
args: movies
metrics:
- name: BLEU4
type: bleu4
value: 0.04213811599760002
- name: ROUGE-L
type: rouge-l
value: 0.2592040186771708
- name: METEOR
type: meteor
value: 0.21637464104334672
- name: BERTScore
type: bertscore
value: 0.9322845239143867
- name: MoverScore
type: moverscore
value: 0.6240379346458808
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.012407170521401091
- name: ROUGE-L
type: rouge-l
value: 0.2701045514256092
- name: METEOR
type: meteor
value: 0.08879367059926961
- name: BERTScore
type: bertscore
value: 0.8849337710648937
- name: MoverScore
type: moverscore
value: 0.5436874635390277
---
# Language Models Fine-tuning on Question Generation: `lmqg/bart-large-subjqa-movies`
This model is fine-tuned version of [lmqg/bart-large-squad](https://huggingface.co/lmqg/bart-large-squad) for question generation task on the
[lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: movies).
This model is continuously fine-tuned with [lmqg/bart-large-squad](https://huggingface.co/lmqg/bart-large-squad).
### Overview
- **Language model:** [lmqg/bart-large-squad](https://huggingface.co/lmqg/bart-large-squad)
- **Language:** en
- **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (movies)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [TBA](TBA)
### Usage
```python
from transformers import pipeline
model_path = 'lmqg/bart-large-subjqa-movies'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
input_text = 'generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.'
question = pipe(input_text)
```
## Evaluation Metrics
### Metrics
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | movies | 0.04213811599760002 | 0.2592040186771708 | 0.21637464104334672 | 0.9322845239143867 | 0.6240379346458808 | [link](https://huggingface.co/lmqg/bart-large-subjqa-movies/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.movies.json) |
### Out-of-domain Metrics
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | default | 0.012407170521401091 | 0.2701045514256092 | 0.08879367059926961 | 0.8849337710648937 | 0.5436874635390277 | [link](https://huggingface.co/lmqg/bart-large-subjqa-movies/raw/main/eval_ood/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_subjqa
- dataset_name: movies
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: lmqg/bart-large-squad
- max_length: 512
- max_length_output: 32
- epoch: 3
- batch: 8
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-large-subjqa-movies/raw/main/trainer_config.json).
## Citation
TBA
|