model update
Browse files- README.md +215 -0
- config.json +1 -1
- eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.json +1 -0
- eval/metric.first.answer.paragraph_answer.question.lmqg_qg_ruquad.default.json +1 -0
- eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_ruquad.default.json +1 -0
- eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json +1 -0
- eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_ruquad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_ruquad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_ruquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_ruquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_ruquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_ruquad.default.txt +0 -0
- pytorch_model.bin +2 -2
- tokenizer_config.json +1 -1
- trainer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: cc-by-4.0
|
4 |
+
metrics:
|
5 |
+
- bleu4
|
6 |
+
- meteor
|
7 |
+
- rouge-l
|
8 |
+
- bertscore
|
9 |
+
- moverscore
|
10 |
+
language: ru
|
11 |
+
datasets:
|
12 |
+
- lmqg/qg_ruquad
|
13 |
+
pipeline_tag: text2text-generation
|
14 |
+
tags:
|
15 |
+
- question generation
|
16 |
+
- answer extraction
|
17 |
+
widget:
|
18 |
+
- text: "generate question: Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов."
|
19 |
+
example_title: "Question Generation Example 1"
|
20 |
+
- text: "generate question: Однако, франкоязычный <hl> Квебек <hl> практически никогда не включается в состав Латинской Америки."
|
21 |
+
example_title: "Question Generation Example 2"
|
22 |
+
- text: "generate question: Классическим примером международного синдиката XX века была группа компаний <hl> Де Бирс <hl> , которая в 1980-е годы контролировала до 90 % мировой торговли алмазами."
|
23 |
+
example_title: "Question Generation Example 3"
|
24 |
+
- text: "extract answers: <hl> в английском языке в нарицательном смысле применяется термин rapid transit (скоростной городской транспорт), однако употребляется он только тогда, когда по смыслу невозможно ограничиться названием одной конкретной системы метрополитена. <hl> в остальных случаях используются индивидуальные названия: в лондоне — london underground, в нью-йорке — new york subway, в ливерпуле — merseyrail, в вашингтоне — washington metrorail, в сан-франциско — bart и т. п. в некоторых городах применяется название метро (англ. metro) для систем, по своему характеру близких к метро, или для всего городского транспорта (собственно метро и наземный пассажирский транспорт (в том числе автобусы и трамваи)) в совокупности."
|
25 |
+
example_title: "Answer Extraction Example 1"
|
26 |
+
- text: "extract answers: Вопреки ожиданиям, объединение денежных систем республик не привело к уменьшению инфляции. Напротив, закдензнаки стали невероятно быстро обесцениваться, особенно в 1924 году. Для обеспечения денежного рынка приходилось увеличивать эмиссию закдензнаков и выпускать в оборот купюры невероятно больших номиналов. <hl> Так, в период с 1 января по 20 марта 1924 года были введены в оборот купюры достоинством 25 000 000 рублей, затем — 250 000 000 рублей. <hl> И, наконец, в апреле 1924 года были выпущены купюры миллиардного достоинства (в просторечии лимард)."
|
27 |
+
example_title: "Answer Extraction Example 2"
|
28 |
+
model-index:
|
29 |
+
- name: lmqg/mbart-large-cc25-ruquad-qg-ae
|
30 |
+
results:
|
31 |
+
- task:
|
32 |
+
name: Text2text Generation
|
33 |
+
type: text2text-generation
|
34 |
+
dataset:
|
35 |
+
name: lmqg/qg_ruquad
|
36 |
+
type: default
|
37 |
+
args: default
|
38 |
+
metrics:
|
39 |
+
- name: BLEU4 (Question Generation)
|
40 |
+
type: bleu4_question_generation
|
41 |
+
value: 17.97
|
42 |
+
- name: ROUGE-L (Question Generation)
|
43 |
+
type: rouge_l_question_generation
|
44 |
+
value: 33.61
|
45 |
+
- name: METEOR (Question Generation)
|
46 |
+
type: meteor_question_generation
|
47 |
+
value: 29.35
|
48 |
+
- name: BERTScore (Question Generation)
|
49 |
+
type: bertscore_question_generation
|
50 |
+
value: 86.5
|
51 |
+
- name: MoverScore (Question Generation)
|
52 |
+
type: moverscore_question_generation
|
53 |
+
value: 65.37
|
54 |
+
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer))
|
55 |
+
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
|
56 |
+
value: 60.14
|
57 |
+
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer))
|
58 |
+
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
|
59 |
+
value: 62.21
|
60 |
+
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer))
|
61 |
+
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
|
62 |
+
value: 58.32
|
63 |
+
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer))
|
64 |
+
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
|
65 |
+
value: 42.22
|
66 |
+
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer))
|
67 |
+
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
|
68 |
+
value: 43.58
|
69 |
+
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer))
|
70 |
+
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
|
71 |
+
value: 41.05
|
72 |
+
- name: BLEU4 (Answer Extraction)
|
73 |
+
type: bleu4_answer_extraction
|
74 |
+
value: 30.37
|
75 |
+
- name: ROUGE-L (Answer Extraction)
|
76 |
+
type: rouge_l_answer_extraction
|
77 |
+
value: 48.9
|
78 |
+
- name: METEOR (Answer Extraction)
|
79 |
+
type: meteor_answer_extraction
|
80 |
+
value: 38.32
|
81 |
+
- name: BERTScore (Answer Extraction)
|
82 |
+
type: bertscore_answer_extraction
|
83 |
+
value: 85.62
|
84 |
+
- name: MoverScore (Answer Extraction)
|
85 |
+
type: moverscore_answer_extraction
|
86 |
+
value: 73.64
|
87 |
+
- name: AnswerF1Score (Answer Extraction)
|
88 |
+
type: answer_f1_score__answer_extraction
|
89 |
+
value: 63.23
|
90 |
+
- name: AnswerExactMatch (Answer Extraction)
|
91 |
+
type: answer_exact_match_answer_extraction
|
92 |
+
value: 42.67
|
93 |
+
---
|
94 |
+
|
95 |
+
# Model Card of `lmqg/mbart-large-cc25-ruquad-qg-ae`
|
96 |
+
This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation and answer extraction jointly on the [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
97 |
+
|
98 |
+
|
99 |
+
### Overview
|
100 |
+
- **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25)
|
101 |
+
- **Language:** ru
|
102 |
+
- **Training data:** [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (default)
|
103 |
+
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
104 |
+
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
105 |
+
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
|
106 |
+
|
107 |
+
### Usage
|
108 |
+
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
|
109 |
+
```python
|
110 |
+
from lmqg import TransformersQG
|
111 |
+
|
112 |
+
# initialize model
|
113 |
+
model = TransformersQG(language="ru", model="lmqg/mbart-large-cc25-ruquad-qg-ae")
|
114 |
+
|
115 |
+
# model prediction
|
116 |
+
question_answer_pairs = model.generate_qa("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.")
|
117 |
+
|
118 |
+
```
|
119 |
+
|
120 |
+
- With `transformers`
|
121 |
+
```python
|
122 |
+
from transformers import pipeline
|
123 |
+
|
124 |
+
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-ruquad-qg-ae")
|
125 |
+
|
126 |
+
# answer extraction
|
127 |
+
answer = pipe("generate question: Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.")
|
128 |
+
|
129 |
+
# question generation
|
130 |
+
question = pipe("extract answers: <hl> в английском языке в нарицательном смысле применяется термин rapid transit (скоростной городской транспорт), однако употребляется он только тогда, когда по смыслу невозможно ограничиться названием одной конкретной системы метрополитена. <hl> в остальных случаях используются индивидуальные названия: в лондоне — london underground, в нью-йорке — new york subway, в ливерпуле — merseyrail, в вашингтоне — washington metrorail, в сан-франциско — bart и т. п. в некоторых городах применяется название метро (англ. metro) для систем, по своему характеру близких к метро, или для всего городского транспорта (собственно метро и наземный пассажирский транспорт (в том числе автобусы и трамваи)) в совокупности.")
|
131 |
+
|
132 |
+
```
|
133 |
+
|
134 |
+
## Evaluation
|
135 |
+
|
136 |
+
|
137 |
+
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json)
|
138 |
+
|
139 |
+
| | Score | Type | Dataset |
|
140 |
+
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
141 |
+
| BERTScore | 86.5 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
142 |
+
| Bleu_1 | 34.01 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
143 |
+
| Bleu_2 | 26.99 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
144 |
+
| Bleu_3 | 21.9 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
145 |
+
| Bleu_4 | 17.97 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
146 |
+
| METEOR | 29.35 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
147 |
+
| MoverScore | 65.37 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
148 |
+
| ROUGE_L | 33.61 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
149 |
+
|
150 |
+
|
151 |
+
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.json)
|
152 |
+
|
153 |
+
| | Score | Type | Dataset |
|
154 |
+
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
155 |
+
| QAAlignedF1Score (BERTScore) | 60.14 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
156 |
+
| QAAlignedF1Score (MoverScore) | 42.22 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
157 |
+
| QAAlignedPrecision (BERTScore) | 58.32 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
158 |
+
| QAAlignedPrecision (MoverScore) | 41.05 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
159 |
+
| QAAlignedRecall (BERTScore) | 62.21 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
160 |
+
| QAAlignedRecall (MoverScore) | 43.58 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
161 |
+
|
162 |
+
|
163 |
+
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_ruquad.default.json)
|
164 |
+
|
165 |
+
| | Score | Type | Dataset |
|
166 |
+
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
|
167 |
+
| AnswerExactMatch | 42.67 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
168 |
+
| AnswerF1Score | 63.23 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
169 |
+
| BERTScore | 85.62 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
170 |
+
| Bleu_1 | 44.16 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
171 |
+
| Bleu_2 | 39.37 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
172 |
+
| Bleu_3 | 34.9 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
173 |
+
| Bleu_4 | 30.37 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
174 |
+
| METEOR | 38.32 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
175 |
+
| MoverScore | 73.64 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
176 |
+
| ROUGE_L | 48.9 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
## Training hyperparameters
|
181 |
+
|
182 |
+
The following hyperparameters were used during fine-tuning:
|
183 |
+
- dataset_path: lmqg/qg_ruquad
|
184 |
+
- dataset_name: default
|
185 |
+
- input_types: ['paragraph_answer', 'paragraph_sentence']
|
186 |
+
- output_types: ['question', 'answer']
|
187 |
+
- prefix_types: ['qg', 'ae']
|
188 |
+
- model: facebook/mbart-large-cc25
|
189 |
+
- max_length: 512
|
190 |
+
- max_length_output: 32
|
191 |
+
- epoch: 12
|
192 |
+
- batch: 2
|
193 |
+
- lr: 0.0001
|
194 |
+
- fp16: False
|
195 |
+
- random_seed: 1
|
196 |
+
- gradient_accumulation_steps: 32
|
197 |
+
- label_smoothing: 0.15
|
198 |
+
|
199 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg-ae/raw/main/trainer_config.json).
|
200 |
+
|
201 |
+
## Citation
|
202 |
+
```
|
203 |
+
@inproceedings{ushio-etal-2022-generative,
|
204 |
+
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
|
205 |
+
author = "Ushio, Asahi and
|
206 |
+
Alva-Manchego, Fernando and
|
207 |
+
Camacho-Collados, Jose",
|
208 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
209 |
+
month = dec,
|
210 |
+
year = "2022",
|
211 |
+
address = "Abu Dhabi, U.A.E.",
|
212 |
+
publisher = "Association for Computational Linguistics",
|
213 |
+
}
|
214 |
+
|
215 |
+
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "lmqg_output/mbart-large-cc25-ruquad-qg-ae/
|
3 |
"_num_labels": 3,
|
4 |
"activation_dropout": 0.0,
|
5 |
"activation_function": "gelu",
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "lmqg_output/mbart-large-cc25-ruquad-qg-ae/model_yzhvsi/epoch_5",
|
3 |
"_num_labels": 3,
|
4 |
"activation_dropout": 0.0,
|
5 |
"activation_function": "gelu",
|
eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"QAAlignedF1Score (BERTScore)": 0.6014372715590431, "QAAlignedRecall (BERTScore)": 0.6220816234742623, "QAAlignedPrecision (BERTScore)": 0.5831608930684375, "QAAlignedF1Score (MoverScore)": 0.42216668630361814, "QAAlignedRecall (MoverScore)": 0.43582919549193205, "QAAlignedPrecision (MoverScore)": 0.4104933801379602, "Bleu_1": 0.07936670794488958, "Bleu_2": 0.03209520506569656, "Bleu_3": 0.017754856212603077, "Bleu_4": 0.011035139351888925, "METEOR": 0.14106350877032667, "ROUGE_L": 0.10903112318490889, "BERTScore": 0.519944298169433, "MoverScore": 0.4994248535875407}, "validation": {"QAAlignedF1Score (BERTScore)": 0.5924273151480047, "QAAlignedRecall (BERTScore)": 0.6126118175101513, "QAAlignedPrecision (BERTScore)": 0.5745262301728905, "QAAlignedF1Score (MoverScore)": 0.41593630003405263, "QAAlignedRecall (MoverScore)": 0.4292269022032105, "QAAlignedPrecision (MoverScore)": 0.4045485561560094, "Bleu_1": 0.07860128971222732, "Bleu_2": 0.03128184304745291, "Bleu_3": 0.017573932159518437, "Bleu_4": 0.010664449524296264, "METEOR": 0.138334975700761, "ROUGE_L": 0.10724067817062491, "BERTScore": 0.5120050816244868, "MoverScore": 0.4985037956544231}}
|
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_ruquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.334960995652944, "Bleu_2": 0.26604029096112286, "Bleu_3": 0.2154952342158938, "Bleu_4": 0.17657026575769336}, "test": {"Bleu_1": 0.3380343151839663, "Bleu_2": 0.26829274187341595, "Bleu_3": 0.21764184473253623, "Bleu_4": 0.1785481276669253}}
|
eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_ruquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.4444109671587636, "Bleu_2": 0.39590623629571087, "Bleu_3": 0.3518706173804563, "Bleu_4": 0.3066860744750603, "METEOR": 0.3813796709142597, "ROUGE_L": 0.48926245707789984, "BERTScore": 0.8573595547162417, "MoverScore": 0.7397204261640233, "AnswerF1Score": 63.50671910709193, "AnswerExactMatch": 43.506751389992054}, "test": {"Bleu_1": 0.44164670006532597, "Bleu_2": 0.3936741302565208, "Bleu_3": 0.3489534414777692, "Bleu_4": 0.303676045610284, "METEOR": 0.38318582826818054, "ROUGE_L": 0.4890006479084039, "BERTScore": 0.8561733973118594, "MoverScore": 0.7363506512943487, "AnswerF1Score": 63.233585669165585, "AnswerExactMatch": 42.67275615567911}}
|
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.33657995563621024, "Bleu_2": 0.26722334905811956, "Bleu_3": 0.21633786326939014, "Bleu_4": 0.17719759515258895, "METEOR": 0.293470313422919, "ROUGE_L": 0.3365495598206828, "BERTScore": 0.8654427092545651, "MoverScore": 0.6558733568485419}, "test": {"Bleu_1": 0.3400680861349971, "Bleu_2": 0.26987916266074424, "Bleu_3": 0.2190001430195806, "Bleu_4": 0.17969794959772686, "METEOR": 0.2934713906190754, "ROUGE_L": 0.3360602288417497, "BERTScore": 0.8650157981648786, "MoverScore": 0.6536732448866794}}
|
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_ruquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_ruquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_ruquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_ruquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_ruquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_ruquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2a9439e11313ce3e6d8cdf48813756d23e3499471fe7a0fb931ddb0f373ba72
|
3 |
+
size 2444587421
|
tokenizer_config.json
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
"single_word": false
|
13 |
},
|
14 |
"model_max_length": 1024,
|
15 |
-
"name_or_path": "lmqg_output/mbart-large-cc25-ruquad-qg-ae/
|
16 |
"pad_token": "<pad>",
|
17 |
"sep_token": "</s>",
|
18 |
"special_tokens_map_file": null,
|
|
|
12 |
"single_word": false
|
13 |
},
|
14 |
"model_max_length": 1024,
|
15 |
+
"name_or_path": "lmqg_output/mbart-large-cc25-ruquad-qg-ae/model_yzhvsi/epoch_5",
|
16 |
"pad_token": "<pad>",
|
17 |
"sep_token": "</s>",
|
18 |
"special_tokens_map_file": null,
|
trainer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dataset_path": "lmqg/qg_ruquad", "dataset_name": "default", "input_types": ["paragraph_answer", "paragraph_sentence"], "output_types": ["question", "answer"], "prefix_types": ["qg", "ae"], "model": "facebook/mbart-large-cc25", "max_length": 512, "max_length_output": 32, "epoch": 12, "batch": 2, "lr": 0.0001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 32, "label_smoothing": 0.15}
|