asahi417 commited on
Commit
c13d86f
·
1 Parent(s): 638bc82

model update

Browse files
README.md ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - relbert/semeval2012_relational_similarity_v6
4
+ model-index:
5
+ - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1-parent
6
+ results:
7
+ - task:
8
+ name: Relation Mapping
9
+ type: sorting-task
10
+ dataset:
11
+ name: Relation Mapping
12
+ args: relbert/relation_mapping
13
+ type: relation-mapping
14
+ metrics:
15
+ - name: Accuracy
16
+ type: accuracy
17
+ value: 0.7030555555555555
18
+ - task:
19
+ name: Analogy Questions (SAT full)
20
+ type: multiple-choice-qa
21
+ dataset:
22
+ name: SAT full
23
+ args: relbert/analogy_questions
24
+ type: analogy-questions
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.3850267379679144
29
+ - task:
30
+ name: Analogy Questions (SAT)
31
+ type: multiple-choice-qa
32
+ dataset:
33
+ name: SAT
34
+ args: relbert/analogy_questions
35
+ type: analogy-questions
36
+ metrics:
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.3916913946587537
40
+ - task:
41
+ name: Analogy Questions (BATS)
42
+ type: multiple-choice-qa
43
+ dataset:
44
+ name: BATS
45
+ args: relbert/analogy_questions
46
+ type: analogy-questions
47
+ metrics:
48
+ - name: Accuracy
49
+ type: accuracy
50
+ value: 0.5269594219010562
51
+ - task:
52
+ name: Analogy Questions (Google)
53
+ type: multiple-choice-qa
54
+ dataset:
55
+ name: Google
56
+ args: relbert/analogy_questions
57
+ type: analogy-questions
58
+ metrics:
59
+ - name: Accuracy
60
+ type: accuracy
61
+ value: 0.6
62
+ - task:
63
+ name: Analogy Questions (U2)
64
+ type: multiple-choice-qa
65
+ dataset:
66
+ name: U2
67
+ args: relbert/analogy_questions
68
+ type: analogy-questions
69
+ metrics:
70
+ - name: Accuracy
71
+ type: accuracy
72
+ value: 0.37280701754385964
73
+ - task:
74
+ name: Analogy Questions (U4)
75
+ type: multiple-choice-qa
76
+ dataset:
77
+ name: U4
78
+ args: relbert/analogy_questions
79
+ type: analogy-questions
80
+ metrics:
81
+ - name: Accuracy
82
+ type: accuracy
83
+ value: 0.40046296296296297
84
+ - task:
85
+ name: Lexical Relation Classification (BLESS)
86
+ type: classification
87
+ dataset:
88
+ name: BLESS
89
+ args: relbert/lexical_relation_classification
90
+ type: relation-classification
91
+ metrics:
92
+ - name: F1
93
+ type: f1
94
+ value: 0.835317161368088
95
+ - name: F1 (macro)
96
+ type: f1_macro
97
+ value: 0.8283163898192295
98
+ - task:
99
+ name: Lexical Relation Classification (CogALexV)
100
+ type: classification
101
+ dataset:
102
+ name: CogALexV
103
+ args: relbert/lexical_relation_classification
104
+ type: relation-classification
105
+ metrics:
106
+ - name: F1
107
+ type: f1
108
+ value: 0.7708920187793428
109
+ - name: F1 (macro)
110
+ type: f1_macro
111
+ value: 0.40683683267154375
112
+ - task:
113
+ name: Lexical Relation Classification (EVALution)
114
+ type: classification
115
+ dataset:
116
+ name: BLESS
117
+ args: relbert/lexical_relation_classification
118
+ type: relation-classification
119
+ metrics:
120
+ - name: F1
121
+ type: f1
122
+ value: 0.6040086673889491
123
+ - name: F1 (macro)
124
+ type: f1_macro
125
+ value: 0.562590771697943
126
+ - task:
127
+ name: Lexical Relation Classification (K&H+N)
128
+ type: classification
129
+ dataset:
130
+ name: K&H+N
131
+ args: relbert/lexical_relation_classification
132
+ type: relation-classification
133
+ metrics:
134
+ - name: F1
135
+ type: f1
136
+ value: 0.8937886902691798
137
+ - name: F1 (macro)
138
+ type: f1_macro
139
+ value: 0.7550347133400666
140
+ - task:
141
+ name: Lexical Relation Classification (ROOT09)
142
+ type: classification
143
+ dataset:
144
+ name: ROOT09
145
+ args: relbert/lexical_relation_classification
146
+ type: relation-classification
147
+ metrics:
148
+ - name: F1
149
+ type: f1
150
+ value: 0.8448762143528674
151
+ - name: F1 (macro)
152
+ type: f1_macro
153
+ value: 0.8407765599818559
154
+
155
+ ---
156
+ # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1-parent
157
+
158
+ RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on
159
+ [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6).
160
+ Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
161
+ It achieves the following results on the relation understanding tasks:
162
+ - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1-parent/raw/main/analogy.json)):
163
+ - Accuracy on SAT (full): 0.3850267379679144
164
+ - Accuracy on SAT: 0.3916913946587537
165
+ - Accuracy on BATS: 0.5269594219010562
166
+ - Accuracy on U2: 0.37280701754385964
167
+ - Accuracy on U4: 0.40046296296296297
168
+ - Accuracy on Google: 0.6
169
+ - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1-parent/raw/main/classification.json)):
170
+ - Micro F1 score on BLESS: 0.835317161368088
171
+ - Micro F1 score on CogALexV: 0.7708920187793428
172
+ - Micro F1 score on EVALution: 0.6040086673889491
173
+ - Micro F1 score on K&H+N: 0.8937886902691798
174
+ - Micro F1 score on ROOT09: 0.8448762143528674
175
+ - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1-parent/raw/main/relation_mapping.json)):
176
+ - Accuracy on Relation Mapping: 0.7030555555555555
177
+
178
+
179
+ ### Usage
180
+ This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
181
+ ```shell
182
+ pip install relbert
183
+ ```
184
+ and activate model as below.
185
+ ```python
186
+ from relbert import RelBERT
187
+ model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1-parent")
188
+ vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
189
+ ```
190
+
191
+ ### Training hyperparameters
192
+
193
+ The following hyperparameters were used during training:
194
+ - model: roberta-base
195
+ - max_length: 64
196
+ - mode: mask
197
+ - data: relbert/semeval2012_relational_similarity_v6
198
+ - split: train
199
+ - split_eval: validation
200
+ - template_mode: manual
201
+ - loss_function: triplet
202
+ - classification_loss: False
203
+ - temperature_nce_constant: 0.05
204
+ - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
205
+ - epoch: 8
206
+ - batch: 128
207
+ - lr: 5e-06
208
+ - lr_decay: False
209
+ - lr_warmup: 1
210
+ - weight_decay: 0
211
+ - random_seed: 1
212
+ - exclude_relation: None
213
+ - n_sample: 320
214
+ - gradient_accumulation: 8
215
+ - relation_level: None
216
+ - data_level: parent
217
+
218
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1-parent/raw/main/trainer_config.json).
219
+
220
+ ### Reference
221
+ If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
222
+
223
+ ```
224
+
225
+ @inproceedings{ushio-etal-2021-distilling-relation-embeddings,
226
+ title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
227
+ author = "Ushio, Asahi and
228
+ Schockaert, Steven and
229
+ Camacho-Collados, Jose",
230
+ booktitle = "EMNLP 2021",
231
+ year = "2021",
232
+ address = "Online",
233
+ publisher = "Association for Computational Linguistics",
234
+ }
235
+
236
+ ```
analogy.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"distance_function": "cosine_similarity", "sat/test": 0.3916913946587537, "sat/valid": 0.32432432432432434, "u2/test": 0.37280701754385964, "u2/valid": 0.4166666666666667, "u4/test": 0.40046296296296297, "u4/valid": 0.3333333333333333, "google/test": 0.6, "google/valid": 0.64, "bats/test": 0.5269594219010562, "bats/valid": 0.507537688442211, "sat_full": 0.3850267379679144}
classification.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.835317161368088, "test/f1_macro": 0.8283163898192295, "test/f1_micro": 0.835317161368088, "test/p_macro": 0.8256213631077887, "test/p_micro": 0.835317161368088, "test/r_macro": 0.834482944523408, "test/r_micro": 0.835317161368088}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.7708920187793428, "test/f1_macro": 0.40683683267154375, "test/f1_micro": 0.7708920187793428, "test/p_macro": 0.685712916470355, "test/p_micro": 0.7708920187793428, "test/r_macro": 0.38272657161964896, "test/r_micro": 0.7708920187793428}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6040086673889491, "test/f1_macro": 0.562590771697943, "test/f1_micro": 0.6040086673889491, "test/p_macro": 0.6466675983543454, "test/p_micro": 0.6040086673889491, "test/r_macro": 0.5542414694496627, "test/r_micro": 0.6040086673889491}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.89378869026918, "test/f1_macro": 0.7550347133400666, "test/f1_micro": 0.8937886902691798, "test/p_macro": 0.8258756179307967, "test/p_micro": 0.89378869026918, "test/r_macro": 0.7545439944330872, "test/r_micro": 0.89378869026918}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8448762143528674, "test/f1_macro": 0.8407765599818559, "test/f1_micro": 0.8448762143528674, "test/p_macro": 0.8352888027973512, "test/p_micro": 0.8448762143528674, "test/r_macro": 0.847890029999879, "test/r_micro": 0.8448762143528674}}
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "relbert_output/models/semeval2012-v6-parent/triplet.mask.e.1",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "roberta-base",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:174555bac528c46434a5d540b2870d68ee79fb9623eeec47a495c48f704a4eff
3
- size 498649201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dafb4959e8f389d58f637f25cd2fdcb830dbece5410bf4264ea7bd87049e2015
3
+ size 498652017
relation_mapping.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": 0.7030555555555555, "prediction": [{"source": ["solar system", "sun", "planet", "mass", "attracts", "revolves", "gravity"], "true": ["atom", "nucleus", "electron", "charge", "attracts", "revolves", "electromagnetism"], "pred": ["electron", "charge", "atom", "nucleus", "attracts", "revolves", "electromagnetism"], "alignment_match": false, "accuracy": 0.42857142857142855, "similarity": 0.9995612635775171, "similarity_true": 0.9995021385477388}, {"source": ["water", "flows", "pressure", "water tower", "bucket", "filling", "emptying", "hydrodynamics"], "true": ["heat", "transfers", "temperature", "burner", "kettle", "heating", "cooling", "thermodynamics"], "pred": ["temperature", "transfers", "heat", "kettle", "burner", "heating", "cooling", "thermodynamics"], "alignment_match": false, "accuracy": 0.5, "similarity": 0.9994963772319986, "similarity_true": 0.9994672306906153}, {"source": ["waves", "shore", "reflects", "water", "breakwater", "rough", "calm", "crashing"], "true": ["sounds", "wall", "echoes", "air", "insulation", "loud", "quiet", "vibrating"], "pred": ["echoes", "wall", "sounds", "air", "insulation", "loud", "quiet", "vibrating"], "alignment_match": false, "accuracy": 0.75, "similarity": 0.9995761058671095, "similarity_true": 0.9995707996134026}, {"source": ["combustion", "fire", "fuel", "burning", "hot", "intense", "oxygen", "carbon dioxide"], "true": ["respiration", "animal", "food", "breathing", "living", "vigorous", "oxygen", "carbon dioxide"], "pred": ["respiration", "animal", "food", "living", "breathing", "vigorous", "oxygen", "carbon dioxide"], "alignment_match": false, "accuracy": 0.75, "similarity": 0.9995296044937549, "similarity_true": 0.9995088878098479}, {"source": ["sound", "low", "high", "echoes", "loud", "quiet", "horn"], "true": ["light", "red", "violet", "reflects", "bright", "dim", "lens"], "pred": ["light", "violet", "dim", "reflects", "bright", "red", "lens"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.9996654731287331, "similarity_true": 0.9996610551141971}, {"source": ["projectile", "trajectory", "earth", "parabolic", "air", "gravity", "attracts"], "true": ["planet", "orbit", "sun", "elliptical", "space", "gravity", "attracts"], "pred": ["sun", "orbit", "planet", "elliptical", "space", "gravity", "attracts"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.9996945833919362, "similarity_true": 0.999680453282005}, {"source": ["breeds", "selection", "conformance", "artificial", "popularity", "breeding", "domesticated"], "true": ["species", "competition", "adaptation", "natural", "fitness", "mating", "wild"], "pred": ["species", "adaptation", "fitness", "natural", "competition", "mating", "wild"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.9993591398919214, "similarity_true": 0.9993292467040449}, {"source": ["ball", "billiards", "speed", "table", "bouncing", "moving", "slow", "fast"], "true": ["molecules", "gas", "temperature", "container", "pressing", "moving", "cold", "hot"], "pred": ["gas", "molecules", "temperature", "container", "pressing", "moving", "cold", "hot"], "alignment_match": false, "accuracy": 0.75, "similarity": 0.9996107724929635, "similarity_true": 0.9995666853701501}, {"source": ["computer", "processing", "erasing", "write", "read", "memory", "outputs", "inputs", "bug"], "true": ["mind", "thinking", "forgetting", "memorize", "remember", "memory", "muscles", "senses", "mistake"], "pred": ["mind", "thinking", "forgetting", "memorize", "remember", "memory", "senses", "muscles", "mistake"], "alignment_match": false, "accuracy": 0.7777777777777778, "similarity": 0.9994503627856324, "similarity_true": 0.999445415207436}, {"source": ["slot machines", "reels", "spinning", "winning", "losing"], "true": ["bacteria", "genes", "mutating", "reproducing", "dying"], "pred": ["bacteria", "genes", "dying", "reproducing", "mutating"], "alignment_match": false, "accuracy": 0.6, "similarity": 0.9990826296678933, "similarity_true": 0.9990723489299664}, {"source": ["war", "soldier", "destroy", "fighting", "defeat", "attacks", "weapon"], "true": ["argument", "debater", "refute", "arguing", "acceptance", "criticizes", "logic"], "pred": ["logic", "debater", "refute", "arguing", "acceptance", "criticizes", "argument"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.9992400129587379, "similarity_true": 0.9992068944085929}, {"source": ["buyer", "merchandise", "buying", "selling", "returning", "valuable", "worthless"], "true": ["believer", "belief", "accepting", "advocating", "rejecting", "true", "false"], "pred": ["believer", "belief", "advocating", "accepting", "rejecting", "true", "false"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.9993917695965245, "similarity_true": 0.9993641485566759}, {"source": ["foundations", "buildings", "supporting", "solid", "weak", "crack"], "true": ["reasons", "theories", "confirming", "rational", "dubious", "flaw"], "pred": ["reasons", "theories", "confirming", "dubious", "rational", "flaw"], "alignment_match": false, "accuracy": 0.6666666666666666, "similarity": 0.9995070770758572, "similarity_true": 0.9994736157244413}, {"source": ["obstructions", "destination", "route", "traveller", "traveling", "companion", "arriving"], "true": ["difficulties", "goal", "plan", "person", "problem solving", "partner", "succeeding"], "pred": ["succeeding", "goal", "plan", "person", "problem solving", "partner", "difficulties"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.9992534529487214, "similarity_true": 0.9992483462420263}, {"source": ["money", "allocate", "budget", "effective", "cheap", "expansive"], "true": ["time", "invest", "schedule", "efficient", "quick", "slow"], "pred": ["time", "invest", "schedule", "efficient", "slow", "quick"], "alignment_match": false, "accuracy": 0.6666666666666666, "similarity": 0.9996534080532216, "similarity_true": 0.9996236166387353}, {"source": ["seeds", "planted", "fruitful", "fruit", "grow", "wither", "blossom"], "true": ["ideas", "inspired", "productive", "product", "develop", "fail", "succeed"], "pred": ["ideas", "inspired", "productive", "product", "develop", "fail", "succeed"], "alignment_match": true, "accuracy": 1, "similarity": 0.9993768967474687, "similarity_true": 0.9993768967474687}, {"source": ["machine", "working", "turned on", "turned off", "broken", "power", "repair"], "true": ["mind", "thinking", "awake", "asleep", "confused", "intelligence", "therapy"], "pred": ["mind", "awake", "asleep", "thinking", "confused", "intelligence", "therapy"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.9993305826857418, "similarity_true": 0.9993229139530904}, {"source": ["object", "hold", "weight", "heavy", "light"], "true": ["idea", "understand", "analyze", "important", "trivial"], "pred": ["idea", "understand", "analyze", "trivial", "important"], "alignment_match": false, "accuracy": 0.6, "similarity": 0.9993377399741032, "similarity_true": 0.9992824553515661}, {"source": ["follow", "leader", "path", "follower", "lost", "wanders", "twisted", "straight"], "true": ["understand", "speaker", "argument", "listener", "misunderstood", "digresses", "complicated", "simple"], "pred": ["understand", "speaker", "argument", "listener", "misunderstood", "digresses", "complicated", "simple"], "alignment_match": true, "accuracy": 1, "similarity": 0.9995056803527054, "similarity_true": 0.9995056803527054}, {"source": ["seeing", "light", "illuminating", "darkness", "view", "hidden"], "true": ["understanding", "knowledge", "explaining", "confusion", "interpretation", "secret"], "pred": ["understanding", "knowledge", "explaining", "confusion", "interpretation", "secret"], "alignment_match": true, "accuracy": 1, "similarity": 0.9995505865031429, "similarity_true": 0.9995505865031429}]}
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "relbert_output/models/semeval2012-v6-parent/triplet.mask.e.1",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "roberta-base",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"model": "roberta-base", "max_length": 64, "mode": "mask", "data": "relbert/semeval2012_relational_similarity_v6", "split": "train", "split_eval": "validation", "template_mode": "manual", "template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>\u2019s <mask>", "loss_function": "triplet", "classification_loss": false, "temperature_nce_constant": 0.05, "temperature_nce_rank": {"min": 0.01, "max": 0.05, "type": "linear"}, "epoch": 8, "batch": 128, "lr": 5e-06, "lr_decay": false, "lr_warmup": 1, "weight_decay": 0, "random_seed": 1, "exclude_relation": null, "n_sample": 320, "gradient_accumulation": 8, "relation_level": null, "data_level": "parent"}
validation_loss.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"split": "validation", "loss": 821.9141342163086, "data": "relbert/semeval2012_relational_similarity_v6", "exclude_relation": null, "relation_level": null, "level": "parent"}