asahi417 commited on
Commit
57cf72d
·
1 Parent(s): 2950d7e

model update

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -2,7 +2,7 @@
2
  datasets:
3
  - semeval2012
4
  model-index:
5
- - name: relbert/relbert-roberta-large-semeval2012-average-prompt-b-triplet
6
  results:
7
  - task:
8
  name: Relation Mapping
@@ -153,26 +153,26 @@ model-index:
153
  value: 0.8890641447568232
154
 
155
  ---
156
- # relbert/relbert-roberta-large-semeval2012-average-prompt-b-triplet
157
 
158
  RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
159
  [semeval2012](https://huggingface.co/datasets/semeval2012).
160
  Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
161
  It achieves the following results on the relation understanding tasks:
162
- - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-average-prompt-b-triplet/raw/main/analogy.json)):
163
  - Accuracy on SAT (full): 0.5748663101604278
164
  - Accuracy on SAT: 0.5756676557863502
165
  - Accuracy on BATS: 0.7809894385769872
166
  - Accuracy on U2: 0.5570175438596491
167
  - Accuracy on U4: 0.5763888888888888
168
  - Accuracy on Google: 0.87
169
- - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-average-prompt-b-triplet/raw/main/classification.json)):
170
  - Micro F1 score on BLESS: 0.9156245291547386
171
  - Micro F1 score on CogALexV: 0.8652582159624412
172
  - Micro F1 score on EVALution: 0.6765980498374865
173
  - Micro F1 score on K&H+N: 0.9621617861862697
174
  - Micro F1 score on ROOT09: 0.8925101848950172
175
- - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-average-prompt-b-triplet/raw/main/relation_mapping.json)):
176
  - Accuracy on Relation Mapping: 0.815952380952381
177
 
178
 
@@ -184,7 +184,7 @@ pip install relbert
184
  and activate model as below.
185
  ```python
186
  from relbert import RelBERT
187
- model = RelBERT("relbert/relbert-roberta-large-semeval2012-average-prompt-b-triplet")
188
  vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
189
  ```
190
 
@@ -213,7 +213,7 @@ The following hyperparameters were used during training:
213
  - fp16: False
214
  - random_seed: 0
215
 
216
- The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-average-prompt-b-triplet/raw/main/trainer_config.json).
217
 
218
  ### Reference
219
  If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
 
2
  datasets:
3
  - semeval2012
4
  model-index:
5
+ - name: relbert/roberta-large-semeval2012-average-prompt-b-triplet
6
  results:
7
  - task:
8
  name: Relation Mapping
 
153
  value: 0.8890641447568232
154
 
155
  ---
156
+ # relbert/roberta-large-semeval2012-average-prompt-b-triplet
157
 
158
  RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
159
  [semeval2012](https://huggingface.co/datasets/semeval2012).
160
  Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
161
  It achieves the following results on the relation understanding tasks:
162
+ - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-triplet/raw/main/analogy.json)):
163
  - Accuracy on SAT (full): 0.5748663101604278
164
  - Accuracy on SAT: 0.5756676557863502
165
  - Accuracy on BATS: 0.7809894385769872
166
  - Accuracy on U2: 0.5570175438596491
167
  - Accuracy on U4: 0.5763888888888888
168
  - Accuracy on Google: 0.87
169
+ - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-triplet/raw/main/classification.json)):
170
  - Micro F1 score on BLESS: 0.9156245291547386
171
  - Micro F1 score on CogALexV: 0.8652582159624412
172
  - Micro F1 score on EVALution: 0.6765980498374865
173
  - Micro F1 score on K&H+N: 0.9621617861862697
174
  - Micro F1 score on ROOT09: 0.8925101848950172
175
+ - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-triplet/raw/main/relation_mapping.json)):
176
  - Accuracy on Relation Mapping: 0.815952380952381
177
 
178
 
 
184
  and activate model as below.
185
  ```python
186
  from relbert import RelBERT
187
+ model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-b-triplet")
188
  vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
189
  ```
190
 
 
213
  - fp16: False
214
  - random_seed: 0
215
 
216
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-triplet/raw/main/trainer_config.json).
217
 
218
  ### Reference
219
  If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).