File size: 5,364 Bytes
c42bf60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
857a373
c42bf60
 
857a373
c42bf60
 
857a373
c42bf60
 
857a373
c42bf60
 
857a373
c42bf60
 
5b2cfbd
857a373
c42bf60
 
 
 
 
 
 
 
0252eb1
c42bf60
 
0252eb1
c42bf60
0252eb1
857a373
0252eb1
857a373
 
0252eb1
857a373
0252eb1
 
c42bf60
0252eb1
 
 
5b2cfbd
857a373
 
c42bf60
857a373
c42bf60
857a373
c42bf60
 
857a373
c42bf60
857a373
 
 
 
 
 
 
 
 
 
c42bf60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0252eb1
5b2cfbd
0252eb1
5b2cfbd
0252eb1
5b2cfbd
 
 
 
 
 
 
 
0252eb1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 1" 
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 2" 
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic,  <hl> Cadillac Records <hl> ."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/t5-base-subjqa-vanilla-restaurants
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_subjqa
      type: restaurants
      args: restaurants
    metrics:
    - name: BLEU4
      type: bleu4
      value: 0.0
    - name: ROUGE-L
      type: rouge-l
      value: 1.27
    - name: METEOR
      type: meteor
      value: 1.2
    - name: BERTScore
      type: bertscore
      value: 80.29
    - name: MoverScore
      type: moverscore
      value: 51.5
---

# Model Card of `lmqg/t5-base-subjqa-vanilla-restaurants`
This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) for question generation task on the [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: restaurants) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [t5-base](https://huggingface.co/t5-base)   
- **Language:** en  
- **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (restaurants)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-base-subjqa-vanilla-restaurants")

# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-base-subjqa-vanilla-restaurants")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-base-subjqa-vanilla-restaurants/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.restaurants.json) 

|            |   Score | Type        | Dataset                                                          |
|:-----------|--------:|:------------|:-----------------------------------------------------------------|
| BERTScore  |   80.29 | restaurants | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_1     |    2.76 | restaurants | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_2     |    0.65 | restaurants | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_3     |    0    | restaurants | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_4     |    0    | restaurants | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| METEOR     |    1.2  | restaurants | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| MoverScore |   51.5  | restaurants | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| ROUGE_L    |    1.27 | restaurants | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_subjqa
 - dataset_name: restaurants
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: ['qg']
 - model: t5-base
 - max_length: 512
 - max_length_output: 32
 - epoch: 1
 - batch: 16
 - lr: 1e-05
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 8
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-base-subjqa-vanilla-restaurants/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```