File size: 4,742 Bytes
33e5863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac801b
33e5863
8ac801b
33e5863
 
8ac801b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e5863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0ed6d
8ac801b
33e5863
 
 
 
 
 
 
 
 
ab0ed6d
33e5863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac801b
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 1" 
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 2" 
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic,  <hl> Cadillac Records <hl> ."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/t5-small-subjqa-vanilla-movies
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_subjqa
      type: movies
      args: movies
    metrics:
    - name: BLEU4
      type: bleu4
      value: 2.9345190129665035e-15
    - name: ROUGE-L
      type: rouge-l
      value: 0.0028020148869182583
    - name: METEOR
      type: meteor
      value: 0.002215978159858887
    - name: BERTScore
      type: bertscore
      value: 0.04778535799546675
    - name: MoverScore
      type: moverscore
      value: 0.49114955906337
---

# Model Card of `lmqg/t5-small-subjqa-vanilla-movies`
This model is fine-tuned version of [t5-small](https://huggingface.co/t5-small) for question generation task on the 
[lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: movies) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


Please cite our paper if you use the model ([TBA](TBA)).

```

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```

### Overview
- **Language model:** [t5-small](https://huggingface.co/t5-small)   
- **Language:** en  
- **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (movies)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [TBA](TBA)

### Usage
```python

from transformers import pipeline

model_path = 'lmqg/t5-small-subjqa-vanilla-movies'
pipe = pipeline("text2text-generation", model_path)

# Question Generation
question = pipe('generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.')

```

## Evaluation Metrics


### Metrics

| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | movies | 0.0 | 0.003 | 0.002 | 0.048 | 0.491 | [link](https://huggingface.co/lmqg/t5-small-subjqa-vanilla-movies/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.movies.json) | 




## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_subjqa
 - dataset_name: movies
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: ['qg']
 - model: t5-small
 - max_length: 512
 - max_length_output: 32
 - epoch: 1
 - batch: 32
 - lr: 0.0001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 2
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-small-subjqa-vanilla-movies/raw/main/trainer_config.json).

## Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}