gossminn commited on
Commit
4c220a1
1 Parent(s): 73a8404

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: predict-perception-bert-blame-concept
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # predict-perception-bert-blame-concept
14
+
15
+ This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.7359
18
+ - Rmse: 0.6962
19
+ - Rmse Blame::a Un concetto astratto o un'emozione: 0.6962
20
+ - Mae: 0.5010
21
+ - Mae Blame::a Un concetto astratto o un'emozione: 0.5010
22
+ - R2: 0.3974
23
+ - R2 Blame::a Un concetto astratto o un'emozione: 0.3974
24
+ - Cos: 0.3913
25
+ - Pair: 0.0
26
+ - Rank: 0.5
27
+ - Neighbors: 0.5507
28
+ - Rsa: nan
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 1e-05
48
+ - train_batch_size: 20
49
+ - eval_batch_size: 8
50
+ - seed: 1996
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Rmse | Rmse Blame::a Un concetto astratto o un'emozione | Mae | Mae Blame::a Un concetto astratto o un'emozione | R2 | R2 Blame::a Un concetto astratto o un'emozione | Cos | Pair | Rank | Neighbors | Rsa |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------------------------------------------------:|:------:|:-----------------------------------------------:|:-------:|:----------------------------------------------:|:-------:|:----:|:----:|:---------:|:---:|
59
+ | 1.0979 | 1.0 | 15 | 1.2387 | 0.9033 | 0.9033 | 0.6603 | 0.6603 | -0.0144 | -0.0144 | 0.0435 | 0.0 | 0.5 | 0.3432 | nan |
60
+ | 1.0172 | 2.0 | 30 | 1.1498 | 0.8703 | 0.8703 | 0.5964 | 0.5964 | 0.0584 | 0.0584 | 0.0435 | 0.0 | 0.5 | 0.2935 | nan |
61
+ | 0.9879 | 3.0 | 45 | 1.2139 | 0.8942 | 0.8942 | 0.6197 | 0.6197 | 0.0060 | 0.0060 | 0.2174 | 0.0 | 0.5 | 0.4582 | nan |
62
+ | 0.9723 | 4.0 | 60 | 1.1152 | 0.8571 | 0.8571 | 0.5982 | 0.5982 | 0.0867 | 0.0867 | 0.2174 | 0.0 | 0.5 | 0.3921 | nan |
63
+ | 0.9584 | 5.0 | 75 | 1.0607 | 0.8358 | 0.8358 | 0.5959 | 0.5959 | 0.1314 | 0.1314 | 0.0435 | 0.0 | 0.5 | 0.4165 | nan |
64
+ | 0.9023 | 6.0 | 90 | 1.0031 | 0.8128 | 0.8128 | 0.5827 | 0.5827 | 0.1786 | 0.1786 | -0.0435 | 0.0 | 0.5 | 0.3862 | nan |
65
+ | 0.8745 | 7.0 | 105 | 0.9715 | 0.7999 | 0.7999 | 0.5796 | 0.5796 | 0.2044 | 0.2044 | 0.3043 | 0.0 | 0.5 | 0.3665 | nan |
66
+ | 0.8082 | 8.0 | 120 | 0.8984 | 0.7692 | 0.7692 | 0.5699 | 0.5699 | 0.2643 | 0.2643 | 0.1304 | 0.0 | 0.5 | 0.3390 | nan |
67
+ | 0.7475 | 9.0 | 135 | 0.8532 | 0.7497 | 0.7497 | 0.5849 | 0.5849 | 0.3013 | 0.3013 | 0.0435 | 0.0 | 0.5 | 0.3100 | nan |
68
+ | 0.6599 | 10.0 | 150 | 0.8737 | 0.7586 | 0.7586 | 0.5822 | 0.5822 | 0.2846 | 0.2846 | 0.3043 | 0.0 | 0.5 | 0.3830 | nan |
69
+ | 0.5867 | 11.0 | 165 | 0.8159 | 0.7331 | 0.7331 | 0.5752 | 0.5752 | 0.3318 | 0.3318 | 0.2174 | 0.0 | 0.5 | 0.4439 | nan |
70
+ | 0.5081 | 12.0 | 180 | 0.8367 | 0.7424 | 0.7424 | 0.6071 | 0.6071 | 0.3148 | 0.3148 | 0.0435 | 0.0 | 0.5 | 0.3561 | nan |
71
+ | 0.4801 | 13.0 | 195 | 0.8353 | 0.7417 | 0.7417 | 0.5567 | 0.5567 | 0.3160 | 0.3160 | 0.3913 | 0.0 | 0.5 | 0.5850 | nan |
72
+ | 0.3714 | 14.0 | 210 | 0.8050 | 0.7282 | 0.7282 | 0.5824 | 0.5824 | 0.3408 | 0.3408 | 0.1304 | 0.0 | 0.5 | 0.3975 | nan |
73
+ | 0.3306 | 15.0 | 225 | 0.7833 | 0.7183 | 0.7183 | 0.5570 | 0.5570 | 0.3585 | 0.3585 | 0.2174 | 0.0 | 0.5 | 0.4604 | nan |
74
+ | 0.2674 | 16.0 | 240 | 0.8148 | 0.7326 | 0.7326 | 0.5475 | 0.5475 | 0.3328 | 0.3328 | 0.3043 | 0.0 | 0.5 | 0.4891 | nan |
75
+ | 0.2129 | 17.0 | 255 | 0.8715 | 0.7576 | 0.7576 | 0.5537 | 0.5537 | 0.2863 | 0.2863 | 0.4783 | 0.0 | 0.5 | 0.5017 | nan |
76
+ | 0.1924 | 18.0 | 270 | 0.7944 | 0.7234 | 0.7234 | 0.5276 | 0.5276 | 0.3495 | 0.3495 | 0.4783 | 0.0 | 0.5 | 0.5797 | nan |
77
+ | 0.1984 | 19.0 | 285 | 0.7885 | 0.7207 | 0.7207 | 0.5208 | 0.5208 | 0.3543 | 0.3543 | 0.3913 | 0.0 | 0.5 | 0.5507 | nan |
78
+ | 0.1623 | 20.0 | 300 | 0.7682 | 0.7113 | 0.7113 | 0.5132 | 0.5132 | 0.3709 | 0.3709 | 0.4783 | 0.0 | 0.5 | 0.5797 | nan |
79
+ | 0.1409 | 21.0 | 315 | 0.7653 | 0.7100 | 0.7100 | 0.5215 | 0.5215 | 0.3733 | 0.3733 | 0.3043 | 0.0 | 0.5 | 0.5415 | nan |
80
+ | 0.1386 | 22.0 | 330 | 0.7688 | 0.7116 | 0.7116 | 0.5124 | 0.5124 | 0.3704 | 0.3704 | 0.3913 | 0.0 | 0.5 | 0.5507 | nan |
81
+ | 0.123 | 23.0 | 345 | 0.7756 | 0.7148 | 0.7148 | 0.5144 | 0.5144 | 0.3648 | 0.3648 | 0.3913 | 0.0 | 0.5 | 0.5507 | nan |
82
+ | 0.1175 | 24.0 | 360 | 0.7423 | 0.6993 | 0.6993 | 0.5015 | 0.5015 | 0.3921 | 0.3921 | 0.3913 | 0.0 | 0.5 | 0.5507 | nan |
83
+ | 0.1188 | 25.0 | 375 | 0.7255 | 0.6913 | 0.6913 | 0.5063 | 0.5063 | 0.4059 | 0.4059 | 0.2174 | 0.0 | 0.5 | 0.4604 | nan |
84
+ | 0.1155 | 26.0 | 390 | 0.7635 | 0.7091 | 0.7091 | 0.5083 | 0.5083 | 0.3748 | 0.3748 | 0.4783 | 0.0 | 0.5 | 0.5797 | nan |
85
+ | 0.0981 | 27.0 | 405 | 0.7128 | 0.6852 | 0.6852 | 0.5020 | 0.5020 | 0.4163 | 0.4163 | 0.3043 | 0.0 | 0.5 | 0.5415 | nan |
86
+ | 0.1109 | 28.0 | 420 | 0.7430 | 0.6996 | 0.6996 | 0.5023 | 0.5023 | 0.3915 | 0.3915 | 0.3913 | 0.0 | 0.5 | 0.5507 | nan |
87
+ | 0.1081 | 29.0 | 435 | 0.7367 | 0.6966 | 0.6966 | 0.5007 | 0.5007 | 0.3967 | 0.3967 | 0.3913 | 0.0 | 0.5 | 0.5507 | nan |
88
+ | 0.0953 | 30.0 | 450 | 0.7359 | 0.6962 | 0.6962 | 0.5010 | 0.5010 | 0.3974 | 0.3974 | 0.3913 | 0.0 | 0.5 | 0.5507 | nan |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.16.2
94
+ - Pytorch 1.10.2+cu113
95
+ - Datasets 1.18.3
96
+ - Tokenizers 0.11.0