File size: 2,040 Bytes
822a11c
032c2ca
 
 
 
 
 
 
822a11c
032c2ca
822a11c
032c2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
""" Chat2Eco model configuration"""

from transformers import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

class Chat2Eco(PretrainedConfig):
    keys_to_ignore_at_inference = ["past_key_values"]
    model_type = "Chat2Eco"
    def __init__(
        self,
        vocab_size=50304,
        hidden_size=2560,
        intermediate_size=6912,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=32,
        head_dim=256,
        hidden_act="silu",
        max_position_embeddings=4096,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        hidden_activation=None,
        rope_theta=10000,
        rope_pct=0.25,
        attention_bias=False,
        attention_dropout=0.0,
        num_experts_per_tok=2,
        num_local_experts=8,
        router_aux_loss_coef=0.02,
        output_router_logits=False,
        norm_eps=1.0e-5,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings        
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.head_dim = head_dim
        self.hidden_act = hidden_act
        self.hidden_activation = hidden_activation
        self.num_key_value_heads = num_key_value_heads
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_bias = attention_bias 
        self.attention_dropout = attention_dropout
        self.num_experts_per_tok = num_experts_per_tok
        self.num_local_experts = num_local_experts
        self.router_aux_loss_coef = router_aux_loss_coef
        self.output_router_logits = output_router_logits
        self.rope_pct = rope_pct
        self.norm_eps = norm_eps
        super().__init__(**kwargs)