LarryTsai commited on
Commit
4751e88
1 Parent(s): 355a3de

Upload ./README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +29 -29
README.md CHANGED
@@ -84,35 +84,35 @@ pipeline_tag: text-to-video
84
 
85
  2. Run inference.
86
  ```python
87
- import torch
88
- from diffusers import AutoencoderKLAllegro, AllegroPipeline
89
- from diffusers.utils import export_to_video
90
- vae = AutoencoderKLAllegro.from_pretrained("rhymes-ai/Allegro-T2V-40x720P", subfolder="vae", torch_dtype=torch.float32)
91
-
92
- pipe = AllegroPipeline.from_pretrained(
93
- "rhymes-ai/Allegro-T2V-40x720P", vae=vae, torch_dtype=torch.bfloat16
94
- )
95
- pipe.to("cuda")
96
- pipe.vae.enable_tiling()
97
-
98
- prompt = "A seaside harbor with bright sunlight and sparkling seawater, with many boats in the water. From an aerial view, the boats vary in size and color, some moving and some stationary. Fishing boats in the water suggest that this location might be a popular spot for docking fishing boats."
99
-
100
- positive_prompt = """
101
- (masterpiece), (best quality), (ultra-detailed), (unwatermarked),
102
- {}
103
- emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo,
104
- sharp focus, high budget, cinemascope, moody, epic, gorgeous
105
- """
106
-
107
- negative_prompt = """
108
- nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality,
109
- low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry.
110
- """
111
-
112
- prompt = prompt.format(prompt.lower().strip())
113
-
114
- video = pipe(prompt, negative_prompt=negative_prompt, guidance_scale=7.5, max_sequence_length=512, num_inference_steps=100, generator = torch.Generator(device="cuda:0").manual_seed(42)).frames[0]
115
- export_to_video(video, "output.mp4", fps=15)
116
  ```
117
 
118
  Use `pipe.enable_sequential_cpu_offload()` to offload the model into CPU for less GPU memory cost, but the inference time will increase significantly.
 
84
 
85
  2. Run inference.
86
  ```python
87
+ import torch
88
+ from diffusers import AutoencoderKLAllegro, AllegroPipeline
89
+ from diffusers.utils import export_to_video
90
+ vae = AutoencoderKLAllegro.from_pretrained("rhymes-ai/Allegro-T2V-40x720P", subfolder="vae", torch_dtype=torch.float32)
91
+
92
+ pipe = AllegroPipeline.from_pretrained(
93
+ "rhymes-ai/Allegro-T2V-40x720P", vae=vae, torch_dtype=torch.bfloat16
94
+ )
95
+ pipe.to("cuda")
96
+ pipe.vae.enable_tiling()
97
+
98
+ prompt = "A seaside harbor with bright sunlight and sparkling seawater, with many boats in the water. From an aerial view, the boats vary in size and color, some moving and some stationary. Fishing boats in the water suggest that this location might be a popular spot for docking fishing boats."
99
+
100
+ positive_prompt = """
101
+ (masterpiece), (best quality), (ultra-detailed), (unwatermarked),
102
+ {}
103
+ emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo,
104
+ sharp focus, high budget, cinemascope, moody, epic, gorgeous
105
+ """
106
+
107
+ negative_prompt = """
108
+ nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality,
109
+ low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry.
110
+ """
111
+
112
+ prompt = prompt.format(prompt.lower().strip())
113
+
114
+ video = pipe(prompt, negative_prompt=negative_prompt, guidance_scale=7.5, max_sequence_length=512, num_inference_steps=100, generator = torch.Generator(device="cuda:0").manual_seed(42)).frames[0]
115
+ export_to_video(video, "output.mp4", fps=15)
116
  ```
117
 
118
  Use `pipe.enable_sequential_cpu_offload()` to offload the model into CPU for less GPU memory cost, but the inference time will increase significantly.