Aria-Base-64K / modeling_aria.py
teowu's picture
Upload folder using huggingface_hub
21546bb verified
raw
history blame
15.3 kB
# Copyright 2024 Rhymes AI. All rights reserved.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch import nn
from transformers import GenerationMixin, PreTrainedModel
from transformers.modeling_outputs import ModelOutput
from transformers.utils import logging
from .configuration_aria import AriaConfig
from .moe_lm import AriaMoELMForCausalLM
from .projector import AriaProjector
from .vision_encoder import AriaVisionModel
logger = logging.get_logger(__name__)
class AriaPretrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
"""
config_class = AriaConfig
base_model_prefix = "model"
_no_split_modules = []
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
_supports_static_cache = True
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA (Scaled Dot Product Attention) or not.
"""
return self.language_model._supports_sdpa
@dataclass
# Copied from transformers.models.llava.modeling_llava.LlavaCausalLMOutputWithPast with Llava->Aria
class AriaCausalLMOutputWithPast(ModelOutput):
"""
Base class for Aria causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
def build_mm_projector(config: AriaConfig):
"""
Builds and returns an AriaProjector instance based on the provided configuration.
Args:
config (AriaConfig): The configuration object containing necessary parameters.
Returns:
AriaProjector: An instance of the AriaProjector class.
"""
return AriaProjector(
patch_to_query_dict=config.projector_patch_to_query_dict,
embed_dim=config.vision_config.hidden_size,
num_heads=config.vision_config.num_attention_heads,
kv_dim=config.vision_config.hidden_size,
ff_dim=config.text_config.hidden_size,
output_dim=config.text_config.hidden_size,
)
# adapted from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration
class AriaForConditionalGeneration(AriaPretrainedModel, GenerationMixin):
"""
Aria model for conditional generation tasks.
This model combines a vision tower, a multi-modal projector, and a language model
to perform tasks that involve both image and text inputs.
"""
def __init__(self, config: AriaConfig):
super().__init__(config)
self.vision_tower = AriaVisionModel(config.vision_config)
self.multi_modal_projector = build_mm_projector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AriaMoELMForCausalLM(config.text_config)
self.pad_token_id = (
self.config.pad_token_id if self.config.pad_token_id is not None else -1
)
self.post_init()
def freeze_vit(self):
"""Freeze the parameters of the vision tower."""
for param in self.vision_tower.parameters():
param.requires_grad = False
def freeze_projector(self):
"""Freeze the parameters of the multi-modal projector."""
for param in self.multi_modal_projector.parameters():
param.requires_grad = False
def freeze_llm(self):
"""Freeze the parameters of the language model."""
for param in self.language_model.parameters():
param.requires_grad = False
def get_input_embeddings(self) -> nn.Module:
"""Retrieve the input embeddings from the language model."""
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
"""Set the input embeddings for the language model."""
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
"""Retrieve the output embeddings from the language model."""
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, value):
"""Set the output embeddings for the language model."""
self.language_model.set_output_embeddings(value)
def set_moe_z_loss_coeff(self, value):
"""
Set the z-loss coefficient for Mixture of Experts (MoE) models.
Args:
value: The z-loss coefficient value to set.
"""
self.language_model.set_z_loss_coeff(value)
def set_moe_aux_loss_coeff(self, value):
"""
Set the auxiliary loss coefficient for Mixture of Experts (MoE) models.
Args:
value: The auxiliary loss coefficient value to set.
"""
self.language_model.set_aux_loss_coeff(value)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
pixel_mask: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
) -> Union[Tuple, AriaCausalLMOutputWithPast]:
"""
Forward pass of the AriaForConditionalGeneration model.
This method processes both text and image inputs, merges them if necessary,
and generates output using the language model.
Args:
input_ids (torch.LongTensor, optional): Input token ids.
pixel_values (torch.FloatTensor, optional): Pixel values of the images.
pixel_mask (torch.LongTensor, optional): Mask for the pixel values.
attention_mask (torch.Tensor, optional): Attention mask.
position_ids (torch.LongTensor, optional): Position ids.
past_key_values (List[torch.FloatTensor], optional): Past key values for efficient processing.
inputs_embeds (torch.FloatTensor, optional): Input embeddings.
labels (torch.LongTensor, optional): Labels for computing the language modeling loss.
use_cache (bool, optional): Whether to use the model's cache mechanism.
output_attentions (bool, optional): Whether to output attention weights.
output_hidden_states (bool, optional): Whether to output hidden states.
return_dict (bool, optional): Whether to return a ModelOutput object.
Returns:
Union[Tuple, AriaCausalLMOutputWithPast]: Model outputs.
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if inputs_embeds is None:
# 1. Extra the input embeddings
inputs_embeds = self.get_input_embeddings()(input_ids)
image_features = None
if pixel_values is not None:
image_outputs, image_attn_mask = self.vision_tower(
pixel_values,
pixel_mask=pixel_mask,
)
selected_image_feature = image_outputs.last_hidden_state
image_features = self.multi_modal_projector(
selected_image_feature, attn_mask=image_attn_mask
)
if image_features is not None:
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
n_image_features = image_features.shape[0] * image_features.shape[1]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
special_image_mask = (
(input_ids == self.config.image_token_index)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
image_features = image_features.to(
inputs_embeds.device, inputs_embeds.dtype
)
inputs_embeds = inputs_embeds.masked_scatter(
special_image_mask, image_features
)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
num_logits_to_keep=num_logits_to_keep,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(
logits.device
)
shift_logits = logits[..., :-1, :][
shift_attention_mask.to(logits.device) != 0
].contiguous()
shift_labels = labels[..., 1:][
shift_attention_mask.to(labels.device) != 0
].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1).to(shift_logits.device),
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return AriaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
pixel_mask=None,
attention_mask=None,
cache_position=None,
num_logits_to_keep=None,
**kwargs,
):
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
num_logits_to_keep=num_logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
model_inputs["pixel_values"] = pixel_values
model_inputs["pixel_mask"] = pixel_mask
return model_inputs