File size: 12,157 Bytes
e83fa52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# Copyright 2024 Rhymes AI. All rights reserved.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import inspect
import logging
import re
from typing import List, Optional, Union
from transformers import AutoTokenizer, BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils import (
PaddingStrategy,
PreTokenizedInput,
TensorType,
TextInput,
TruncationStrategy,
)
from .vision_processor import AriaVisionProcessor
logger = logging.getLogger(__name__)
class AriaProcessor(ProcessorMixin):
"""
AriaProcessor is a processor for the Aria model which wraps the Aria image preprocessor and the LLama slow tokenizer.
Args:
image_processor(AriaVisionProcessor): The AriaVisionProcessor to use for image preprocessing.
tokenizer(AutoTokenizer): The AutoTokenizer to use for tokenizing the text.
patch_size(int): The patch size to use for the image processor.
chat_template(str): The chat template to use for the tokenizer.
image_token(str): The image token to use for the tokenizer.
"""
attributes = []
valid_kwargs = ["chat_template", "patch_size", "image_token"]
image_processor_class = None
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor: AriaVisionProcessor = None,
tokenizer: Union[AutoTokenizer, str] = None,
patch_size: int = 490,
chat_template: str = None,
image_token: str = "<|img|>",
):
super().__init__(chat_template=chat_template)
if image_processor is None:
self.image_processor = AriaVisionProcessor(max_image_size=patch_size)
else:
self.image_processor = image_processor
if isinstance(tokenizer, str):
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer, trust_remote_code=True, use_fast=False
)
else:
self.tokenizer = tokenizer
if self.tokenizer is not None and self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.unk_token
self.image_token = image_token
# Copied from transformers.models.llava_next.processing_llave_next.LlavaNextProcessor.__call__
def __call__(
self,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
],
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
max_image_size: Optional[int] = 980,
split_image: Optional[bool] = False,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
max_image_size (`int`, *optional*):
Maximum size of the image to be processed.
split_image (`bool`, *optional*):
Whether to split the image into patches before processing.
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_mask** -- Pixel mask to be fed to a model. Returned when `images` is not `None`.
"""
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError(
"Invalid input text. Please provide a string, or a list of strings"
)
if images is not None:
image_inputs = self.image_processor(
images,
return_tensors=return_tensors,
max_image_size=max_image_size,
split_image=split_image,
)
# expand the image_token according to the num_crops of image
prompt_strings = []
crop_iter = iter(image_inputs.pop("num_crops"))
for prompt in text:
prompt_strings.append(
re.sub(
re.escape(self.image_token),
lambda _: next(crop_iter) * self.image_token,
prompt,
)
)
else:
image_inputs = {}
prompt_strings = text
text_inputs = self.tokenizer(
prompt_strings,
return_tensors=return_tensors,
padding=padding,
truncation=truncation,
max_length=max_length,
)
return BatchFeature(data={**text_inputs, **image_inputs})
@staticmethod
def _extract_kwargs(func: callable, **kwargs) -> dict:
"""
Extract the kwargs that are valid for the given function.
"""
return {
k: v for k, v in kwargs.items() if k in inspect.signature(func).parameters
}
def save_pretrained(self, save_directory, **kwargs):
"""
Save both the image processor and tokenizer.
"""
if self.image_processor is not None:
self.image_processor.save_pretrained(
save_directory,
**self._extract_kwargs(self.image_processor.save_pretrained, **kwargs),
)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(
save_directory,
**self._extract_kwargs(self.tokenizer.save_pretrained, **kwargs),
)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path,
tokenizer_path=None,
image_processor_path=None,
**kwargs,
):
"""
Load both the image processor and tokenizer from a pretrained model path.
"""
tokenizer_path = (
tokenizer_path
if tokenizer_path is not None
else pretrained_model_name_or_path
)
image_processor_path = (
image_processor_path
if image_processor_path is not None
else pretrained_model_name_or_path
)
image_processor = AriaVisionProcessor.from_pretrained(
image_processor_path,
**cls._extract_kwargs(AriaVisionProcessor.from_pretrained, **kwargs),
)
if "use_fast" in kwargs:
logger.warning("use_fast is not supported for AriaProcessor. Ignoring...")
kwargs.pop("use_fast")
try:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path,
use_fast=False,
**cls._extract_kwargs(AutoTokenizer.from_pretrained, **kwargs),
)
chat_template = tokenizer.chat_template
except Exception as e:
logger.warning(f"Failed to load tokenizer from {tokenizer_path}: {e}")
tokenizer = None
chat_template = None
return cls(
image_processor=image_processor,
tokenizer=tokenizer,
chat_template=chat_template,
)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
if self.tokenizer is None:
raise ValueError(
"Tokenizer is not initialized. Please provide a valid tokenizer."
)
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
if self.tokenizer is None:
raise ValueError(
"Tokenizer is not initialized. Please provide a valid tokenizer."
)
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|