|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
from torchao.quantization import ( |
|
quantize_, |
|
) |
|
from torchao.quantization.quant_api import _is_linear |
|
import requests |
|
from torchao.quantization.quant_api import to_affine_quantized_intx, MappingType, _get_linear_subclass_inserter |
|
from moe_lm import GroupedGEMM |
|
torch._inductor.config.force_fuse_int_mm_with_mul = True |
|
torch._inductor.config.fx_graph_cache = True |
|
|
|
model_id_or_path = "./out/aria-torchao-in8wo" |
|
tokenizer_id_or_path = "./" |
|
|
|
def int8_weight_only(group_size=None): |
|
""" |
|
Applies int8 weight-only symmetric per-channel quantization to linear layers. |
|
""" |
|
def apply_int8wo_quant(weight, group_size=None): |
|
weight = weight.reshape(-1, weight.shape[-1]) |
|
mapping_type = MappingType.SYMMETRIC |
|
target_dtype = torch.int8 |
|
eps = torch.finfo(torch.float32).eps |
|
zero_point_dtype = torch.int64 |
|
if group_size is None: |
|
group_size = weight.shape[1] |
|
|
|
block_size = (1, weight.shape[1]) |
|
return to_affine_quantized_intx(weight, mapping_type, block_size, target_dtype, eps=eps, zero_point_dtype=zero_point_dtype) |
|
|
|
return _get_linear_subclass_inserter(apply_int8wo_quant, group_size=group_size) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id_or_path, |
|
device_map="cuda", |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
do_sample=True, |
|
temperature=0.7, |
|
) |
|
|
|
model = torch.compile(model, mode="max-autotune", fullgraph=True) |
|
|
|
def filter_fn(m, *args): |
|
if "experts.fc1" in args[0] or "experts.fc2" in args[0]: |
|
return True |
|
return _is_linear(m, *args) |
|
|
|
print(model) |
|
|
|
model.to("cuda") |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
|
|
{"text": "what's in the image?", "type": "text"}, |
|
], |
|
} |
|
] |
|
|
|
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png" |
|
|
|
image = Image.open(requests.get(image_path, stream=True).raw) |
|
image = None |
|
|
|
processor = AutoProcessor.from_pretrained(tokenizer_id_or_path, trust_remote_code=True) |
|
text = processor.apply_chat_template(messages, add_generation_prompt=True) |
|
inputs = processor(text=text, images=image, return_tensors="pt") |
|
|
|
inputs = {k: v.to(model.device) for k, v in inputs.items()} |
|
|
|
out = model.generate(**inputs, max_new_tokens=50, tokenizer=processor.tokenizer, stop_strings=["<|im_end|>"]) |
|
output_ids = out[0][inputs["input_ids"].shape[1] :] |
|
result = processor.decode(output_ids, skip_special_tokens=True) |
|
print(result) |
|
|
|
|