riasharma commited on
Commit
5d1ba10
·
1 Parent(s): d7120bc

End of training

Browse files
README.md CHANGED
@@ -15,14 +15,14 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.6624
19
- - Answer: {'precision': 0.7003222341568206, 'recall': 0.8059332509270705, 'f1': 0.7494252873563217, 'number': 809}
20
- - Header: {'precision': 0.3148148148148148, 'recall': 0.2857142857142857, 'f1': 0.29955947136563876, 'number': 119}
21
- - Question: {'precision': 0.7602441150828247, 'recall': 0.8187793427230047, 'f1': 0.7884267631103073, 'number': 1065}
22
- - Overall Precision: 0.7127
23
- - Overall Recall: 0.7817
24
- - Overall F1: 0.7456
25
- - Overall Accuracy: 0.8098
26
 
27
  ## Model description
28
 
@@ -52,23 +52,23 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 1.8207 | 1.0 | 10 | 1.6331 | {'precision': 0.01676829268292683, 'recall': 0.013597033374536464, 'f1': 0.015017064846416382, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.21189024390243902, 'recall': 0.13051643192488263, 'f1': 0.16153399186519465, 'number': 1065} | 0.1143 | 0.0753 | 0.0908 | 0.3429 |
58
- | 1.4867 | 2.0 | 20 | 1.3144 | {'precision': 0.13937282229965156, 'recall': 0.14833127317676142, 'f1': 0.14371257485029942, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4092178770949721, 'recall': 0.5502347417840375, 'f1': 0.4693632358830597, 'number': 1065} | 0.3079 | 0.3542 | 0.3294 | 0.5753 |
59
- | 1.1706 | 3.0 | 30 | 1.0082 | {'precision': 0.4507042253521127, 'recall': 0.553770086526576, 'f1': 0.4969495285635052, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5885810243492863, 'recall': 0.6582159624413145, 'f1': 0.6214539007092199, 'number': 1065} | 0.5237 | 0.5765 | 0.5488 | 0.6721 |
60
- | 0.8874 | 4.0 | 40 | 0.8115 | {'precision': 0.6029106029106029, 'recall': 0.7169344870210136, 'f1': 0.6549971767363072, 'number': 809} | {'precision': 0.05714285714285714, 'recall': 0.01680672268907563, 'f1': 0.025974025974025972, 'number': 119} | {'precision': 0.649792531120332, 'recall': 0.7352112676056338, 'f1': 0.6898678414096917, 'number': 1065} | 0.6199 | 0.6849 | 0.6508 | 0.7517 |
61
- | 0.7072 | 5.0 | 50 | 0.7206 | {'precision': 0.6341948310139165, 'recall': 0.788627935723115, 'f1': 0.7030303030303031, 'number': 809} | {'precision': 0.18032786885245902, 'recall': 0.09243697478991597, 'f1': 0.12222222222222223, 'number': 119} | {'precision': 0.696551724137931, 'recall': 0.7586854460093897, 'f1': 0.7262921348314607, 'number': 1065} | 0.6542 | 0.7311 | 0.6905 | 0.7725 |
62
- | 0.5896 | 6.0 | 60 | 0.6813 | {'precision': 0.6571428571428571, 'recall': 0.796044499381953, 'f1': 0.7199552822806037, 'number': 809} | {'precision': 0.1746031746031746, 'recall': 0.09243697478991597, 'f1': 0.12087912087912087, 'number': 119} | {'precision': 0.7217981340118744, 'recall': 0.7990610328638498, 'f1': 0.7584670231729055, 'number': 1065} | 0.6778 | 0.7556 | 0.7146 | 0.7867 |
63
- | 0.5193 | 7.0 | 70 | 0.6605 | {'precision': 0.6949516648764769, 'recall': 0.799752781211372, 'f1': 0.7436781609195402, 'number': 809} | {'precision': 0.20618556701030927, 'recall': 0.16806722689075632, 'f1': 0.1851851851851852, 'number': 119} | {'precision': 0.734468085106383, 'recall': 0.8103286384976526, 'f1': 0.7705357142857142, 'number': 1065} | 0.6945 | 0.7677 | 0.7293 | 0.7979 |
64
- | 0.4591 | 8.0 | 80 | 0.6473 | {'precision': 0.6922246220302376, 'recall': 0.792336217552534, 'f1': 0.7389048991354467, 'number': 809} | {'precision': 0.24, 'recall': 0.20168067226890757, 'f1': 0.2191780821917808, 'number': 119} | {'precision': 0.7382154882154882, 'recall': 0.8234741784037559, 'f1': 0.7785175321793164, 'number': 1065} | 0.6965 | 0.7737 | 0.7331 | 0.8059 |
65
- | 0.3939 | 9.0 | 90 | 0.6369 | {'precision': 0.6886291179596175, 'recall': 0.8009888751545118, 'f1': 0.7405714285714285, 'number': 809} | {'precision': 0.2777777777777778, 'recall': 0.25210084033613445, 'f1': 0.2643171806167401, 'number': 119} | {'precision': 0.7515047291487532, 'recall': 0.8206572769953052, 'f1': 0.784560143626571, 'number': 1065} | 0.7016 | 0.7787 | 0.7382 | 0.8088 |
66
- | 0.3604 | 10.0 | 100 | 0.6514 | {'precision': 0.6954643628509719, 'recall': 0.796044499381953, 'f1': 0.7423631123919308, 'number': 809} | {'precision': 0.29, 'recall': 0.24369747899159663, 'f1': 0.2648401826484018, 'number': 119} | {'precision': 0.7665505226480837, 'recall': 0.8262910798122066, 'f1': 0.7953004970628107, 'number': 1065} | 0.7144 | 0.7792 | 0.7454 | 0.8125 |
67
- | 0.3344 | 11.0 | 110 | 0.6505 | {'precision': 0.7031419284940412, 'recall': 0.8022249690976514, 'f1': 0.7494226327944574, 'number': 809} | {'precision': 0.3153153153153153, 'recall': 0.29411764705882354, 'f1': 0.30434782608695654, 'number': 119} | {'precision': 0.755632582322357, 'recall': 0.8187793427230047, 'f1': 0.7859396124380351, 'number': 1065} | 0.7112 | 0.7807 | 0.7443 | 0.8087 |
68
- | 0.3144 | 12.0 | 120 | 0.6461 | {'precision': 0.6973262032085561, 'recall': 0.8059332509270705, 'f1': 0.7477064220183487, 'number': 809} | {'precision': 0.3119266055045872, 'recall': 0.2857142857142857, 'f1': 0.2982456140350877, 'number': 119} | {'precision': 0.7590051457975986, 'recall': 0.8309859154929577, 'f1': 0.7933662034961901, 'number': 1065} | 0.7109 | 0.7883 | 0.7476 | 0.8137 |
69
- | 0.2976 | 13.0 | 130 | 0.6569 | {'precision': 0.6925531914893617, 'recall': 0.8046971569839307, 'f1': 0.7444253859348199, 'number': 809} | {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119} | {'precision': 0.7586805555555556, 'recall': 0.8206572769953052, 'f1': 0.7884528642309426, 'number': 1065} | 0.7060 | 0.7832 | 0.7426 | 0.8094 |
70
- | 0.2876 | 14.0 | 140 | 0.6629 | {'precision': 0.7034632034632035, 'recall': 0.8034610630407911, 'f1': 0.7501442585112521, 'number': 809} | {'precision': 0.3148148148148148, 'recall': 0.2857142857142857, 'f1': 0.29955947136563876, 'number': 119} | {'precision': 0.7657894736842106, 'recall': 0.819718309859155, 'f1': 0.7918367346938776, 'number': 1065} | 0.7169 | 0.7812 | 0.7477 | 0.8104 |
71
- | 0.2877 | 15.0 | 150 | 0.6624 | {'precision': 0.7003222341568206, 'recall': 0.8059332509270705, 'f1': 0.7494252873563217, 'number': 809} | {'precision': 0.3148148148148148, 'recall': 0.2857142857142857, 'f1': 0.29955947136563876, 'number': 119} | {'precision': 0.7602441150828247, 'recall': 0.8187793427230047, 'f1': 0.7884267631103073, 'number': 1065} | 0.7127 | 0.7817 | 0.7456 | 0.8098 |
72
 
73
 
74
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.7207
19
+ - Answer: {'precision': 0.7114754098360656, 'recall': 0.8046971569839307, 'f1': 0.7552204176334106, 'number': 809}
20
+ - Header: {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119}
21
+ - Question: {'precision': 0.7707061900610288, 'recall': 0.8300469483568075, 'f1': 0.7992766726943942, 'number': 1065}
22
+ - Overall Precision: 0.7203
23
+ - Overall Recall: 0.7883
24
+ - Overall F1: 0.7528
25
+ - Overall Accuracy: 0.7971
26
 
27
  ## Model description
28
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.8417 | 1.0 | 10 | 1.6166 | {'precision': 0.028741328047571853, 'recall': 0.03584672435105068, 'f1': 0.0319031903190319, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.16827852998065765, 'recall': 0.16338028169014085, 'f1': 0.16579323487374942, 'number': 1065} | 0.0993 | 0.1019 | 0.1006 | 0.3810 |
58
+ | 1.4476 | 2.0 | 20 | 1.2599 | {'precision': 0.15711947626841244, 'recall': 0.11866501854140915, 'f1': 0.13521126760563382, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.46172441579371476, 'recall': 0.5380281690140845, 'f1': 0.4969644405897658, 'number': 1065} | 0.3612 | 0.3357 | 0.3480 | 0.5747 |
59
+ | 1.1227 | 3.0 | 30 | 0.9780 | {'precision': 0.4661214953271028, 'recall': 0.4932014833127318, 'f1': 0.4792792792792793, 'number': 809} | {'precision': 0.16279069767441862, 'recall': 0.058823529411764705, 'f1': 0.08641975308641975, 'number': 119} | {'precision': 0.5979020979020979, 'recall': 0.6422535211267606, 'f1': 0.6192847442281576, 'number': 1065} | 0.5335 | 0.5469 | 0.5401 | 0.7036 |
60
+ | 0.8596 | 4.0 | 40 | 0.7946 | {'precision': 0.5789473684210527, 'recall': 0.6526576019777504, 'f1': 0.6135967460778617, 'number': 809} | {'precision': 0.24193548387096775, 'recall': 0.12605042016806722, 'f1': 0.16574585635359115, 'number': 119} | {'precision': 0.6658141517476556, 'recall': 0.7333333333333333, 'f1': 0.6979445933869526, 'number': 1065} | 0.6167 | 0.6643 | 0.6396 | 0.7589 |
61
+ | 0.6705 | 5.0 | 50 | 0.7132 | {'precision': 0.6424759871931697, 'recall': 0.7441285537700866, 'f1': 0.6895761741122567, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.21008403361344538, 'f1': 0.2577319587628866, 'number': 119} | {'precision': 0.6747376916868443, 'recall': 0.7849765258215963, 'f1': 0.7256944444444444, 'number': 1065} | 0.6499 | 0.7341 | 0.6894 | 0.7767 |
62
+ | 0.5653 | 6.0 | 60 | 0.6840 | {'precision': 0.653125, 'recall': 0.7750309023485785, 'f1': 0.7088750706613907, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.2184873949579832, 'f1': 0.2561576354679803, 'number': 119} | {'precision': 0.7077814569536424, 'recall': 0.8028169014084507, 'f1': 0.7523097228332599, 'number': 1065} | 0.6696 | 0.7566 | 0.7105 | 0.7846 |
63
+ | 0.4959 | 7.0 | 70 | 0.6684 | {'precision': 0.6872964169381107, 'recall': 0.7824474660074165, 'f1': 0.7317919075144509, 'number': 809} | {'precision': 0.2815533980582524, 'recall': 0.24369747899159663, 'f1': 0.26126126126126126, 'number': 119} | {'precision': 0.734006734006734, 'recall': 0.8187793427230047, 'f1': 0.7740790057700843, 'number': 1065} | 0.6935 | 0.7697 | 0.7296 | 0.7950 |
64
+ | 0.4343 | 8.0 | 80 | 0.6696 | {'precision': 0.6898395721925134, 'recall': 0.7972805933250927, 'f1': 0.7396788990825688, 'number': 809} | {'precision': 0.26956521739130435, 'recall': 0.2605042016806723, 'f1': 0.264957264957265, 'number': 119} | {'precision': 0.7495769881556683, 'recall': 0.831924882629108, 'f1': 0.7886070315976857, 'number': 1065} | 0.6998 | 0.7837 | 0.7394 | 0.7987 |
65
+ | 0.375 | 9.0 | 90 | 0.6760 | {'precision': 0.7105549510337323, 'recall': 0.8071693448702101, 'f1': 0.755787037037037, 'number': 809} | {'precision': 0.25, 'recall': 0.2605042016806723, 'f1': 0.25514403292181076, 'number': 119} | {'precision': 0.7758007117437722, 'recall': 0.8187793427230047, 'f1': 0.7967108268615805, 'number': 1065} | 0.7180 | 0.7807 | 0.7481 | 0.7992 |
66
+ | 0.3532 | 10.0 | 100 | 0.6802 | {'precision': 0.7147470398277718, 'recall': 0.8207663782447466, 'f1': 0.7640966628308401, 'number': 809} | {'precision': 0.3018867924528302, 'recall': 0.2689075630252101, 'f1': 0.28444444444444444, 'number': 119} | {'precision': 0.7761061946902655, 'recall': 0.8234741784037559, 'f1': 0.7990888382687927, 'number': 1065} | 0.7266 | 0.7893 | 0.7566 | 0.8046 |
67
+ | 0.3265 | 11.0 | 110 | 0.6995 | {'precision': 0.6968716289104638, 'recall': 0.7985166872682324, 'f1': 0.7442396313364056, 'number': 809} | {'precision': 0.308411214953271, 'recall': 0.2773109243697479, 'f1': 0.29203539823008845, 'number': 119} | {'precision': 0.7589134125636672, 'recall': 0.8394366197183099, 'f1': 0.7971466785555059, 'number': 1065} | 0.7111 | 0.7893 | 0.7482 | 0.7973 |
68
+ | 0.3023 | 12.0 | 120 | 0.7053 | {'precision': 0.7027896995708155, 'recall': 0.8096415327564895, 'f1': 0.7524411257897761, 'number': 809} | {'precision': 0.30303030303030304, 'recall': 0.33613445378151263, 'f1': 0.3187250996015936, 'number': 119} | {'precision': 0.769434628975265, 'recall': 0.8178403755868544, 'f1': 0.7928994082840236, 'number': 1065} | 0.7131 | 0.7858 | 0.7477 | 0.7991 |
69
+ | 0.2927 | 13.0 | 130 | 0.7080 | {'precision': 0.7024704618689581, 'recall': 0.8084054388133498, 'f1': 0.7517241379310345, 'number': 809} | {'precision': 0.3125, 'recall': 0.29411764705882354, 'f1': 0.30303030303030304, 'number': 119} | {'precision': 0.7679033649698016, 'recall': 0.8356807511737089, 'f1': 0.8003597122302158, 'number': 1065} | 0.7171 | 0.7923 | 0.7528 | 0.7999 |
70
+ | 0.2756 | 14.0 | 140 | 0.7128 | {'precision': 0.7081967213114754, 'recall': 0.8009888751545118, 'f1': 0.7517401392111368, 'number': 809} | {'precision': 0.32142857142857145, 'recall': 0.3025210084033613, 'f1': 0.3116883116883117, 'number': 119} | {'precision': 0.7720524017467248, 'recall': 0.8300469483568075, 'f1': 0.7999999999999999, 'number': 1065} | 0.7219 | 0.7868 | 0.7529 | 0.7984 |
71
+ | 0.2741 | 15.0 | 150 | 0.7207 | {'precision': 0.7114754098360656, 'recall': 0.8046971569839307, 'f1': 0.7552204176334106, 'number': 809} | {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119} | {'precision': 0.7707061900610288, 'recall': 0.8300469483568075, 'f1': 0.7992766726943942, 'number': 1065} | 0.7203 | 0.7883 | 0.7528 | 0.7971 |
72
 
73
 
74
  ### Framework versions
logs/events.out.tfevents.1703748267.dlmachine2.188588.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3da2b19f8751e2bfd11f295be768074d5fbd8f9998e33351c029d690886f50a7
3
- size 12344
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cd1c5da9fe8462a6caaf06627dcf74b7666f9d0e581fa5b26b08e5a3c7aee41
3
+ size 14681
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9f39cab94f3558aadf16de89d01672f3d4e2414817c84729a5a07a73936b81b7
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3427899da2c9799db2b23fd9bc3438213ee2ea11c544535980d77273b878bd1d
3
  size 450558212